
X SUMMARY OF NOTATION 

2 REAL NuMBERS 

The set of real numbers will be denoted by ~. and ~n will denote n­
dimensional Euclidean space. In ~. the interval (a, b] is defined as {x E ~: 

a< x::; b}, and (a, oo) as {x E ~: x >a}; other types of intervals are defined 
similarly. If a= (a 1 , ... , an) and b = (b1, •.. , bn) are points in ~n, a::; b 
will mean a; ::; b; for all i. The interval (a, b] is defined as {x E Rn: a; < X; 

::; b;, i = 1, ... , n}, and other types of intervals are defined similarly. 
The set of extended real numbers is the two-point compactification 

~ U {oo} U {-oo}, denoted by "i; the set of n-tuples (x1, ... , Xn), with each 
X; E "i, is denoted by "in. We adopt the following rules of arithmetic in "i: 

a + oo = oo + a = oo, a - oo = -oo +a = -oo, a E ~. 

00 + 00 = 00, -00-00 = -00 (oo- oo is not defined), 

b·OO=OO·b= 00 

{ 
if 

-00 if 
bE "i 
bE "i, 

b > 0, 
b < 0, 

~- ~- 0 a E ~ (
00

00 
is not defined), 

00- -00- ' 

0 . 00 = 00 . 0 = 0. 

The rules are convenient when developing the properties of the abstract 
Lebesgue integral, but it should be emphasized that "i is not a field under 
these operations. 

Unless otherwise specified, positive means (strictly) greater than zero, and 
nonnegative means greater than or equal to zero. 

The set of complex numbers is denoted by <C, and the set of n-tuples of 
complex numbers by cn. 

3 FUNCTIONS 

If f is a function from Q to Q' (written as f: Q---+ Q') and B c Q', 
the preimage of B under f is given by f- 1(B) ={wE Q: f(w) E B}. 
It follows from the definition that f- 1(U;B;) = UJ-1(B;), f- 1(n;B;) 
= n f- 1(B;), f- 1(A- B)= f- 1(A)- f- 1(B); hence f- 1(A") = [f- 1(AW. 
If fP is a class of sets, f- 1(fP) means the collection of sets f- 1(B), BE W. 

Iff: ~---+ ~. f is increasing iff x < y implies f(x) :S f(y); decreasing iff 
x < y implies f(x) ::=: f(y). Thus, "increasing" and "decreasing" do not have 
the strict connotation. If fn: Q---+ "i, n = 1, 2, ... , the fn are said to form 
an increasing sequence iff fn(w) :S fn+l(w) for all nand w; a decreasing 
sequence is defined similarly. 
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If f and g are functions from Q to i:, statements such as f ::; g are always 
interpreted as holding pointwise, that is, f(w) :S g(w) for all w E Q. Similarly, 
if f;: Q ---+ i: for each i E /, sup1 ft is the function whose value at w is 
sup{ft(w): i E!}. 

If f 1, /2 .... form an increasing sequence of functions with limit f [that 
is, limn--HXJ fn(w) = f(w) for all w], we write fn t f. (Similarly, fn-.(, f is 
used for a decreasing sequence.) 

Sometimes, a set such as {wE Q: f(w)::; g(w)} is abbreviated as {f::; g}; 
similarly, the preimage {wE Q: f(w) E B} is written as {fEB}. 

If A C Q, the indicator of A is the function defined by IA(w) = 1 if wE A 
and by I A ( w) = 0 if w ¢ A. The phrasP. "characteristic function" is often used 
in the literature, but we shall not adopt this term here. 

If f is a function of two variables x and y, the symbol f (x, ·) is used for 
the mapping y---+ f(x, y) with x fixed. 

The composition of two functions X: Q ---+ Q' and f: Q' ---+ Q" is denoted 
by foX or f(X). 

If f: Q ---+ i:, the positive and negative parts of f are defined by j+ 
=max(/, 0) and f- =max(- f, 0), that is, 

f+(w) = { 0 f(w) if f(w) 2: 0, 
if f(w) < 0, 

f--(w)- {- f(w) if f(w) :S 0, 
- 0 if f(w) > 0. 

4 TOPOLOGY 

A metric space is a set Q with a function d (called a metric) from Q x Q 

to the nonnegative reals, satisfying d(x, y) 2: 0, d(x, y) = 0 iff x = y, d(x, y) 
= d(y, x), and d(x, z) ::; d(x, y) + d(y, z). If d(x, y) can be 0 for x =I y, but 
d satisfies the remaining properties, d is called a pseudometric (the term 
semimetric is also used in the literature). 

A ball (or open ball) in a metric or pseudometric space is a set of the form 
B(x, r) = {y E Q: d(x, y) < r} where x, the center of the ball, is a point of 
Q, and r, the radius, is a positive real number. A closed ball is a set of the 
form B(x, r) = {y E n: d(x, y) :s r}. 

Sequences in Q are denoted by {xn, n = 1, 2, ... }. The term "lower semi­
continuous" is abbreviated LSC, and "upper semicontinuous" is abbreviated 
USC. 

No knowledge of general topology (beyond metric spaces) is assumed, 
and the few comments that refer to general topological spaces can safely 
be ignored. 
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5 VECTOR SPACES 

The terms "vector space" and "linear space" are synonymous. All vector 
spaces are over the real or complex field, and the complex field is assumed 
unless the term "real vector space" is used. 

A Hamel basis for a vector space L is a maximal linearly independent subset 
B of L. (Linear independence means that if x1, .•• , Xn E B, n = 1, 2, ... , and 
c1, ... , Cn are scalars, then 2.::7=1 c;x1 = 0 iff all c; = 0.) Alternatively, a Hamel 
basis is a linearly independent subset B with the property that each x E L is a 
finite linear combination of elements in B. [An orthononnal basis for a Hilbert 
space (Chapter 3) is a different concept.] 

The terms "subspace" and "linear manifold" are synonymous, each referring 
to a subset M of a vector space L that is itself a vector space under the 
operations of addition and scalar multiplication in L. If there is a metric on L 
and M is a closed subset of L, then M is called a closed subspace. 

If B is an arbitrary subset of L, the linear manifold generated by B, denoted 
by L(B), is the smallest linear manifold containing all elements of B, that 
is, the collection of finite linear combinations of elements of B. Assuming a 
metric on L, the space spanned by B, denoted by S(B), is the smallest closed 
subspace containing all elements of B. Explicitly, S(B) is the closure of L(B). 

6 ZORN'S LEMMA 

A partial ordering on a set S is a relation "::;" that is 

(1) reflexive: a ::; a; 
(2) antisymmetric: if a ::; b and b ::; a, then a = b; and 
(3) transitive: if a ::; b and b ::; c, then a ::; c. 

(All elements a, b, c belong to S.) 

If C C S, Cis said to be totally ordered iff for all a, b E C, either a ::; b or 
b ::; a. A totally ordered subset of S is also called a chain inS. 

The form of Zorn's lemma that will be used in the text is as follows. 
LetS be a set with a partial ordering "::;."Assume that every chain C inS 

has an upper bound; in other words, there is an element x E S such that x ::=: a 
for all a E C. Then S has a maximal element, that is, an element m such that 
for each a E S it is not possible to have m ::; a and m =/; a. 

Zorn's lemma is actually an axiom of set theory, equivalent to the axiom 
of choice. 





CHAPTER 

1 
FUNDAMENTALS OF MEASURE AND 
INTEGRATION THEORY 

In this chapter we give a self-contained presentation of the basic concepts of 
the theory of measure and integration. The principles discussed here and in 
Chapter 2 will serve as background for the study of probability as well as 
harmonic analysis, linear space theory, and other areas of mathematics. 

1.1 INTRODUCTION 

It will be convenient to start with a little practice in the algebra of sets. 
This will serve as a refresher and also as a way of collecting a few results 
that will often be useful. 

Let A1, A2, ... be subsets of a set Q. If A1 C A2 C · · · and U~=l An =A, 
we say that the An form an increasing sequence of sets with limit A, or that 
the An increase to A; we write An t A. If A1 :> A2 :> · · · and n~1 An =A, 
we say that the An form a decreasing sequence of sets with limit A, or that 
the An decrease to A; we write An -.1- A. 

The De Morgan laws, namely, (UnAnr = nnA~, (nnAnr =UnA~, im­
ply that 

(1) if An t A, then A~ -.1- N; if An -.1- A, then A~ t A c. 

It is sometimes useful to write a union of sets as a disjoint union. This may 
be done as follows: 

Let A1, A2 , .•• be subsets of n. For each n we have 

(2) U7=1 A; = A1 u (A~ n A2) u (A~ n A~ n A3) 

u · · · u (A~ n · · ·A~_ 1 nAn). 
Furthermore, 

(3) U~=1 An = U~= 1 (Af n ·· · nA~_ 1 nAn). 
In (2) and (3), the sets on the right are disjoint. If the An form an increasing 

sequence, the formulas become 
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(4) U7=1 A;= A1 U (A2- A1) U · · · U (An- An-I) 

and 
(5) U~=IAn = U~=l(An -An-I) 

(take Ao as the empty set). 
The results (1)-(5) are proved using only the definitions of union, intersec­

tion, and complementation; see Problem 1. 
The following set operation will be of particular interest. If A1, A2, •.• are 

subsets of n, we define 

(6) limsupnAn = n~=l U~nAk. 
Thus w E lim supn An iff for every n, w E Ak for some k 2: n, in other 

words, 
(7) w E lim supn An iff w E An for infinitely many n. 

Also define 
(8) liminfnAn = U~=I n~nAk. 

Thus wE liminfn An iff for some n, wEAk for all k 2: n, in other words, 
(9) w E lim infn An iff w E An eventually, that is, for all but finitely 

many n. 
We shall call lim supn An the upper limit of the sequence of sets An, and 

lim infn An the lower limit. The terminology is, of course, suggested by the 
analogous concepts for sequences of real numbers 

lim supxn = inf supxb 
n n k?:_n 

lim inf Xn = sup inf Xk. 
n n k?:_n 

See Problem 4 for a further development of the analogy. 
The following facts may be verified (Problem 5): 
(1 0) (lim supn An )c = lim infn A~ 

(11) (lim infn An )c = lim supn A~ 

(12) liminfnAn C limsupnAn 

(13) If An t A or An -.(,A, then lim infn An =lim supn An =A. 

In general, if lim infn An = lim supn An = A, then A is said to be the limit 
of the sequence A 1, A2, .. . ; we write A= limn An. 

Problems 

1. Establish formulas (1)-(5). 

2. Define sets of real numbers as follows. Let An = ( -1/n, 1] if n is odd, 
and An= (-1, 1/n] if n is even. Find limsupnAn and liminfnAn. 

3. Let Q = ~2 , An the interior of the circle with center at (( -l)n /n, 0) and 
radius 1. Find lim supn An and lim infn An. 
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4. Let {xn} be a sequence of real numbers, and let An = ( -00, Xn ). What 
is the connection between lim supn-+oo Xn and lim supn An (similarly for 
liminf)? 

5. Establish formulas (10)-(13). 

6. Let A= (a, b) and B = (c, d) be disjoint open intervals of ~. and let 
Cn =A if n is odd, Cn = B if n is even. Find limsupn Cn and liminfn Cn· 

1.2 FIELDS, u-FIELDS, AND MEASURES 

Length, area, and volume, as well as probability, are instances of the mea­
sure concept that we are going to discuss. A measure is a set function, that 
is, an assignment of a number tt(A) to each set A in a certain class. Some 
structure must be imposed on the class of sets on which JL is defined, and 
probability considerations provide a good motivation for the type of structure 
required. If Q is a set whose points correspond to the possible outcomes of a 
random experiment, certain subsets of Q will be called "events" and assigned 
a probability. Intuitively, A is an event if the question "Does w belong to A?" 
has a definite yes or no answer after the experiment is performed (and the 
outcome corresponds to the point w E Q). Now if we can answer the question 
"Is wE A?'' we can certainly answer the question "Is wE Ac?," and if, for 
each i = 1, ... , n, we can decide whether or not w belongs to A;, then we can 
determine whether or not w belongs to U7=1 A; (and similarly for n7=1 A;). 
Thus it is natural to require that the class of events be closed under comple­
mentation, finite union, and finite intersection; furthermore, as the answer to 
the question "Is w E Q?" is always "yes," the entire space Q should be an 
event. Closure under countable union and intersection is difficult to justify 
physically, and perhaps the most convincing reason for requiring it is that a 
richer mathematical theory is obtained. Specifically, we are able to assert that 
the limit of a sequence of events is an event; see 1.2.1. 

1.2.1 Definitions. Let !JT be a collection of subsets of a set n. Then !JT is 
called afield (the term algebra is also used) iff Q E !JT and !JT is closed under 
complementation and finite union, that is, 

(a) Q E !fT. 
(b) If A E !JT, then N E !fT. 
(c) If A1, A2, ... , An E !JT, then U7=1 A; E !fT. 

It follows that !JT is closed under finite intersection. For if A 1, .•• , An E !JT, 
then 

1 QA,~ (~AJ er. 

lf (c) is replaced by closure under countable union, that is, 
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(d) If A1, A2, ... E .7, then U~1 A; E .7, 

.9' is called a a-field (the term a-algebra is also used). Just as above, Y is 
also closed under countable intersection. 

If Y is a field, a countable union of sets in :Y can be expressed as the limit 
of an increasing sequence of sets in .7, and conversely. To see this, note that 
if A= U~= 1 An, then U7=1 A; t A; conversely, if An t A, then A= U~=I An. 
This shows that a a-field is a field that is closed under limits of increasing 
sequences. 

1.2.2 Examples. The largest a-field of subsets of a fixed set Q is the col­
lection of all subsets of Q. The smallest a-field consists of the two sets 0 
and n. 

Let A be a nonempty proper subset of Q, and let Y = {0, Q, A, N}. Then 
Y is the smallest a-field containing A. For if~ is a a-field and A E :9', then 
by definition of a a-field, Q, 0, and Ar belong to ~. hence Y c ~. But Y is 
a a-field, for if we form complements or unions of sets in Y, we invariably 
obtain sets in.'#'. Thus .9' is a a-field that is included in any a-field containing 
A, and the result follows. 

If A1, ... , An are arbitrary subsets of Q, the smallest a-field containing 
A 1, ••• , An may be described explicitly; see Problem 8. 

If.'? is a class of sets, the smallest a -field containing the sets of.'? will be 
written as a(Y), and sometimes called the minimal a-field over .'?. We also 
call a(Y) the a-field generated by Y, and currently this is probably the most 
common terminology. 

Let Q be the set ~ of real numbers. Let Y consist of all finite disjoint 
unions of right-semiclosed intervals. (A right-semiclosed interval is a set 
of the form (a, b] = {x: a< x::; b}, -oo::; a< b < oo; by convention we 
also count (a, oo) as right-semiclosed for -oo::; a< oo. The convention is 
necessary because ( -oo, a] belongs to .'Y, and if .'7' is to be a field, the com­
plement (a, oo) must also belong to .'#'.) It may be verified that conditions 
(a)-(c) of 1.2.1 hold; and thus .'7' is a field. But .'T is not a a-field; for 
example, An = (0, 1- (1/n)] E .7, n = 1, 2, ... , and U~1 An = (0, 1) ¢ .'Y. 

If Q is the set "i = [ -oo, oo] of extended real numbers, then just as above, 
the collection of finite disjoint unions of right-semiclosed intervals forms a 
field but not a a-field. Here, the right-semiclosed intervals are sets of the 
form (a, b] = {x: a < x::; b}, -oo ::; a < b::; oo, and, by convention, the sets 
[- oo, b] = {x: -oo ::; x ::; b}, -oo ::; b ::; oo. (In this case the convention is 
necessary because (b, oo] must belong to Y, and therefore the complement 
[ -oo, b] also belongs to .7.) 

There is a type of reasoning that occurs so often in problems involving 
a-fields that it deserves to be displayed explicitly, as in the following typical 
illustration. 
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If :5' is a class of subsets of Q and A c Q, we denote by l:f' n A the class 
{B n A: BE 23}. If the minimal er-field over If. is er(Ci') = Y, let us show 
that 

erA(if' nA) =.rnA, 

where erA (11' n A) is the minimal er-field of subsets of A over g-:· n A. (In other 
words, A rather than Q is regarded as the entire space.) 

Now it' c .7, hence ~· n A c .Y n A, and it is not hard to verify that .!JT n A 
is a er-field of subsets of A. Therefore erA (:5' n A) c Y n A. 

To establish the reverse inclusion we must show that B n A E erA (23 n A) for 
all B E .rJT. This is not obvious, so we resort to the following basic reasoning 
process, which might be called the good sets principle. Let c'l" be the class of 
good sets, that is, let Y consist of those sets B E Y such that 

B nA E erA(~' nA). 

Since Y and erA (15 n A) are er-fields, it follows quickly that .7 is a er-field. 
But g-· c .7, so that er(W) c .7, hence .7 = .7 and the result follows. Briefly, 
every set in W is good and the class of good sets forms a er-field; consequently, 
every set in er(/3) is good. 

One other comment: If 15' is closed under finite intersection and A E If', 
then If' nA = {C E 25: C c A}. (Observe that if C C A, then C = C nA.) 

1.2.3 Definitions and Comments. A measure on a er-field Y is a nonneg­
ative, extended real-valued function JL on Y such that whenever A 1, A2, ... 
form a finite or countably infinite collection of disjoint sets in .7, we have 

JL (VAn) = ~ jt(An ). 

If JL(Q) = 1, JL is called a probability measure. 
A measure space is a triple (Q, .7, JL) where Q is a set, Y is a er-field 

of subsets of Q, and JL is a measure on .7. If JL is a probability measure, 
(Q, .'7, JL) is called a probability space. 

It will be convenient to have a slight generalization of the notion of a 
measure on a er-field. Let Y be a field, JL a set function on .!JT (a map from 
Y to llf ). We say that JL is countably additive on .!JT iff whenever A1, A2, ... 
form a finite or countably infinite collection of disjoint sets in c!JT whose union 
also belongs toY (this will always be the case if Y is a er-field) we have 

JL (VAn) = ~jt(An)· 
If this requirement holds only for finite collections of disjoint sets in Y, JL is 
said to be finitely additive on !7. To avoid the appearance of terms of the form 
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+oo -oo in the summation, we always assume that +oo and -oo cannot both 
belong to the range of JL. 

If JL is countably additive and tt(A) 2: 0 for all A E.¥, JL is called a measure 
on .¥, a probability measure if tt(Q) = I. 

Note that countable additivity actually implies finite additivity. For if tt(A) 
= +oo for all A E .¥, or if tt(A) = -oo for all A E .¥, the result is immediate; 
therefore assume tt(A) finite for some A E.¥. By considering the sequence 
A, 0, 0, ... , we find that tt(0) = 0, and finite additivity is now established by 
considering the sequence At, ... , An, 0, 0, ... , where At, ... , An are disjoint 
sets in.¥. 

Although the set function given by tt(A) = +oo for all A E .9' satisfies the 
definition of a measure, and similarly tt(A) = -oo for all A E .¥ defines a 
countably additive set function, we shall from now on exclude these cases. 
Thus by the above discussion, we always have tt(0) = 0. 

If A E .9' and tt(Ac) = 0, we can frequently ignore Ac; we say that JL is 
concentrated on A. 

1.2.4 Examples. Let Q be any set, and let §T consist of all subsets of 
Q. Define tt(A) as the number of points of A. Thus if A has n members, 
n = 0, I, 2, ... , then tt(A) = n; if A is an infinite set, tt(A) = oo. The set 
function JL is a measure on .¥, called counting measure on Q. 

A closely related measure is defined as follows. Let Q = {xt, x2, ... } be 
a finite or countably infinite set, and let Pt, p2, ... be nonnegative numbers. 
Take .¥ as all subsets of Q, and define 

Thus if A = {x;l' x;2, •• • }, then tt(A) = p;1 + p;2 + · · ·. The set function JL is 
a measure on.¥ and tt{x;} = p;, i = 1, 2, .... A probability measure will be 
obtained iff L; p; = I; if all p; = 1, then JL is counting measure. 

Now if A is a subset of~. we try to arrive at a definition of the length of A. 
If A is an interval (open, closed, or semiclosed) with endpoints a and b, it is 
reasonable to take the length of A to be tt(A) = b- a. If A is a complicated set, 
we may not have any intuition about its length, but we shall see in Section 1.4 
that the requirements that tt(a, b] = b - a for all a, b E ~. a < b, and that JL 
be a measure, determine JL on a large class of sets. 

Specifically, JL is determined on the collection of Borel sets of ~' denoted 
by .513'(~) and defined as the smallest cr-field of subsets of ~ containing all 
intervals (a, b], a, b E ~. 

Note that .13'(~) is guaranteed to exist; it may be described (admittedly in a 
rather ethereal way) as the intersection of all cr-fields containing the intervals 
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(a, b]. Also, if a cr-field contains, say, all open intervals, it must contain all 
intervals (a, b], and conversely. For 

(a, b] = n (a. b + ~) 
n=l 

and (a, b)= lJ (a, b- ~]. 
n=l 

Thus .J5'(~) is the smallest cr-field containing all open intervals. Similarly we 
may replace the intervals (a, b] by other classes of intervals, for instance, 

all closed intervals, 
all intervals [a, b), a, b E ~. 

all intervals (a, oo ), a E ~. 

all intervals [a, oo ), a E ~. 

all intervals ( -oo, b), b E ~. 

all intervals ( -oo, b], bE ~-

Since a cr-field that contains all intervals of a given type contains all inter­
vals of any other type, ._%'(~) may be described as the smallest cr-field that 
contains the class of all intervals of~- Similarly, 35'(~) is the smallest cr-field 
containing all open sets of ~- (To see this, recall that an open set is a count­
able union of open intervals.) Since a set is open iff its complement is closed, 
c~(~) is the smallest cr-field containing all closed sets of ~- Finally, if .97Q is 
the field of finite disjoint unions of right-semiclosed intervals (see 1.2.2), then 
._%'(~) is the smallest cr-field containing the sets of §0. 

Intuitively, we may think of generating the Borel sets by starting with the 
intervals and forming complements and countable unions and intersections in 
all possible ways. This idea is made precise in Problem 11. 

The class of Borel sets of i:, denoted by .%'(i:), is defined as the smallest 
cr-field of subsets of i: containing all intervals (a, b], a, bE i:. The above 
discussion concerning the replacement of the right-semiclosed intervals by 
other classes of sets applies equally well to i:. 

If E E ._%'(~). JJ(E) will denote {B E ._%'(~): B C E}; this coincides with 
{An E: A E ._%'(~)} (see 1.2.2). 

We now begin to develop some properties of set functions. 

1.2.5 Theorem. Let JL be a finitely additive set function on the field .¥. 

(a) JL(0) = 0. 
(b) JL(A U B)+ JL(A n B) = JL(A) + JL(B) for all A, BE .'Y. 
(c) If A, BE.¥ and B c A, then JL(A) = JL(B) + JL(A- B) 

(hepce JL(A -B) = JL(A) - JL(B) if JL(B) is finite, and JL(B) ::=. JL(A) if 
JL(A- B) 2: 0). 
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(d) If JL is nonnegative, 

for all At, ... ,An E.¥. 

If JL is a measure, 

for all At, A2, ... E !T such that U~=t An E .'Y. 

PROOF. (a) Pick A E !T such that JL(A) is finite; then 

JL(A) = JL(A U 0) = JL(A) + JL(0). 

(b) By finite additivity, 

JL(A) = JL(A n B)+ JL(A -B), 

JL(B) = JL(A n B)+ JL(B- A). 

Add the above equations to obtain 

JL(A) + JL(B) = JL(A n B)+ [JL(A -B)+ JL(B- A)+ JL(A n B)] 

= JL(A n B) + JL(A U B). 

(c) We may write A = B U (A- B), hence JL(A) = JL(B) + JL(A- B). 
(d) We have 

n 

UA; =At u (A~ nA2) u (A~ nA2 nA3) u · · · u (A~ n · · · nA~_ 1 nAn) 
i=t 

[see Section 1.1, formula (2)]. The sets on the right are disjoint and 

by (c). 

The case in which JL is a measure is handled using identity (3) of Sec­
tion 1.1. D 

1.2.6 Definitions. A set function JL defined on !T is said to be finite iff 
JL(A) is finite, that is, not ±oo, for each A E .¥. If JL is finitely additive, it is 
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sufficient to require that tt(Q) be finite; for Q =AU Ac, and if tt(A) is, say, 
+oo, so is tt(D.). 

A nonnegative, finitely additive set function JL on the field .¥is said to be 
a-finite on.¥ iff Q can be written as U::0= 1 An where the An belong to.¥ and 
tt(An) < oo for all n. [By formula (3) of Section 1.1, the An may be assumed 
disjoint.] We shall see that many properties of finite measures can be extended 
quickly to a-finite measures. 

It follows from 1.2.5(c) that a nonnegative, finitely additive set function JL 
on a field.¥ is finite iff it is bounded; that is, sup{ ltt(A)I: A E .¥} < oo. This 
no longer holds if the nonnegativity assumption is dropped (see Problem 4). 
It is true, however, that a countably additive set function on a a-field is finite 
iff it is bounded; this will be proved in 2.1.3. 

Countably additive set functions have a basic continuity property, which we 
now describe. 

1.2. 7 Theorem. Let JL be a countably additive set function on the a-field Y. 

(a) If A1, A2, ... E.¥ and An t A, then tt(An)--+ tt(A) as n --+ 00. 

(b) If A1,A2,··· E!T,An ..j,A, and tt(AI) is finite [hence tt(An) is fi­
nite for all n since tt(AI) = tt(An) + tt(AI -An)], then tt(An)--+ tt(A) as 
n--+ oo. 

The same results hold if .9' is only assumed to be a field, if we add the 
hypothesis that the limit sets A belong to.¥. [If A ¢.¥and JL 2: 0, 1.2.5(c) 
implies that tt(An) increases to a limit in part (a), and decreases to a limit in 
part (b), but we cannot identify the limit with tt(A).] 

PRooF. (a) If tt(An) = oo for some n, then tt(A) = tt(An) + tt(A -An) 
= oo + tt(A -An) = oo. Replacing A by Ak we find that tt(Ak) = oo for all 
k 2: n, and we are finished. In the same way we eliminate the case in which 
tt(An) = -oo for some n. Thus we may assume that all tt(An) are finite. 

Since the An form an increasing sequence, we may use identity (5) of 
Section 1.1: 

A= A1 U (A2- A1) U "• U (An- An-I) U • · ·. 

Therefore, by 1.2.5(c), 

tt(A) = tt(AI) + tt(A2)- tt(AI) + · · · + tt(An)- tt(An-1) + · · · 
= lim tt(An ). 

n->oo 

fb) If An ..j, A, then A1 -An t A1- A, hence tt(AI -An)--+ tt(AI- A) 
by (a). The result now follows from 1.2.5(c). D 
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We shall frequently encounter situations in which finite additivity of a partic­
ular set function is easily established, but countable additivity is more difficult. 
It is useful to have the result that finite additivity plus continuity implies 
countable additivity. 

1.2.8 Theorem. Let IL be a finitely additive set function on the field .¥. 

(a) Assume that IL is continuous from below at each A E.¥, that is, if 
At.A2, ... E .'Y, A= U~ 1 An E.¥, and Ant A, then ~L(An)---+ ~L(A). It fol­
lows that IL is countably additive on .¥. 

(b) Assume that IL is continuous from above at the empty set, that is, if 
A 1, A2, ... , E .¥ and An ..j, 0, then ~L(An) ---+ 0. It follows that IL is countably 
additive on .¥. 

PRooF. (a) Let A 1,A2, ... be disjoint sets in.¥ whose union A belongs to 
.¥. If Bn = U?=l A; then Bn t A, hence ~L(Bn)---+ ~L(A) by hypothesis. But 
~L(Bn) = 2.::?= 1 ~L(A;) by finite additivity, hence ~L(A) = limn--->oo 2.::?= 1 ~L(A;), 
the desired result. 

(b) Let A 1, A2, ... be disjoint sets in .¥whose union A belongs to .¥, and 
let Bn = U?=l A;. By 1.2.5(c), ~L(A) = ~L(Bn) + ~L(A- Bn); but A- Bn ..j, 0, 
so by hypothesis, ~L(A - Bn) ---+ 0. Thus ~L(Bn) ---+ ~L(A), and the result follows 
as in (a). D 

If ILl and IL2 are measures on the cr-field .¥, then IL = ILl - IL2 is countably 
additive on.¥, assuming either ILl or 1L2 is finite-valued. We shall see later (in 
2.1.3) that any countably additive set function on a cr-field can be expressed 
as the difference of two measures. 

For examples of finitely additive set functions that are not countably addi­
tive, see Problems 1, 3, and 4. 

Problems 

1. Let Q be a countably infinite set, and let .¥consist of all subsets of Q. 

Define ~L(A) = 0 if A is finite, ~L(A) = oo if A is infinite. 

(a) Show that IL is finitely additive but not countably additive. 
(b) Show that Q is the limit of an increasing sequence of sets An with 

~L(An) = 0 for all n, but ~L(Q) = 00. 

2. Let IL be counting measure on Q, where Q is an infinite set. Show that 
there is a sequence of sets An ..j, 0 with limn--.oo ~L(An) =I 0. 

3. Let Q be a countably infinite set, and let.¥ be the field consisting of all 
finite subsets of Q and their complements. If A is finite, set ~L(A) = 0, 
and if Ac is finite, set ~L(A) = 1. 

(a) Show that IL is finitely additive but not countably additive on .¥. 
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(b) Show that Q is the limit of an increasing sequence of sets An E !7 
with tt(An) = 0 for all n, but jt(Q) = 1. 

4. Let .r be the field of finite disjoint unions of right-semiclosed intervals 
of ~. and define the set function JL on .r as follows. 

JL( -oo, a]= a, 

JL(a, b] = b- a, 

jt(b, 00) = -b, 

jt(~) = 0, 

n 

= LJL(I;) 
i=l 

a E ~. 

a,b E ~. 

bE~. 

a< b, 

if It. ... , In are disjoint right -semiclosed intervals. 

(a) Show that JL is finitely additive but not countably additive on .r. 
(b) Show that JL is finite but unbounded on .r. 

5. Let JL be a nonnegative, finitely additive set function on the field .r. If 
At, A2, ... are disjoint sets in .'T and U::1 An E Y, show that 

6. Let f: Q--+ Q', and let fP be a class of subsets of Q'. Show that 

cr(f- 1(fP)) = f- 1(cr(fP)), 

where f- 1 (fP) = {f- 1 (A): A E fP}. (Use the good sets principle.) 

7. If A is a Borel subset of~. show that the smallest cr-field of subsets of 
A containing the sets open in A (in the relative topology inherited from 
~) is {B E ._%'(~): B C A}. 

8. LetA 1, •• • ,An be arbitrary subsets of a set Q. Describe (explicitly) the 
smallest cr-field Y containing A 1, ••• , An. How many sets are there in 
Y? (Give an upper bound that is attainable under certain conditions.) 
List all the sets in .r when n = 2. 

9. (a) Let tf be an arbitrary class of subsets of Q, and let ~ be the col­
lf!ction of all finite unions U?=t A;, n = 1, 2, ... , where each A; is a 
~ite intersection nJ=l Bij, with Bij or its complement a set in ?P. 
Show that ~ is the minimal field (not cr-field) over tf. 

(b) Show that the minimal field can also be described as the collection 
!!lJ of all finite disjoint unions U?= 1 A;, where the A; are as above. 
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(c) If 9!, ... , .¥, are fields of subsets of Q, show that the smallest field 
including ,9')' ... 'c'F;, consists of all finite (disjoint) unions of sets 
At n ···nAn with A; E .97;, i = 1, ... , n. 

10. Let JL be a finite measure on the cr-field .'#'. If An E .r, n = 1, 2, ... and 
A = limn An (see Section 1.1 ), show that JL(A) = limn--+oc jt(An ). 

11.* Let 'if? be any class of subsets of Q, with 0, Q E '6'. Define 'if?o = 'if?, 
and for any ordinal a > 0 write, inductively, 

where!!!);' denotes the class of all countable unions of differences of sets 
in !!2J. 

Let Y = U{ Wa: a < ,Bt}, where .Bt is the first uncountable ordinal, 
and let Y be the minimal cr-field over If'. Since each if'a C.'#', we have 
.'? C Y. Also, the Wa increase with a, and W C Wa for all a. 

(a) Show that Y is a cr-field (hence Y = Y by minimality of .7). 

(b) If the cardinality of W is at most c, the cardinality of the reals, 
show that card Y ::: c also. 

12. Show that if JL is a finite measure, there cannot be uncountably many 
disjoint sets A such that JL(A) > 0. 

1.3 EXTENSION OF MEASURES 

In 1.2.4, we discussed the concept of length of a subset of IRL The problem 
was to extend the set function given on intervals by JL(a, b] = b - a to a larger 
class of sets. If 90 is the field of finite disjoint unions of right-semiclosed 
intervals, there is no problem extending JL to .9'0: if A 1, •.• , An are disjoint 
right-semiclosed intervals, we set JL(U7= 1 A;) = 2.::7= 1 JL(A;). The resulting set 
function on 90 is finitely additive, but countable additivity is not clear at this 
point. Even if we can prove countable additivity on 9Q, we still have the 
problem of extending JL to the minimal cr-field over 9"0, namely, the Borel sets. 

We are going to consider a generalization of the above problem. Instead of 
working only with length, we shall examine set functions given by JL(a, b] 
= F(b)- F(a) where F is an increasing right-continuous function from ~ 
to ~. The extension technique to be developed is not restricted to set func­
tions defined on subsets of ~; we shall prove a general result concerning the 
extension of a measure from a field Yo to the minimal cr-field over §0. 

It will be convenient to consider finite measures at first, and nothing is lost 
if we normalize and work with probability measures. 

1.3.1 Lemma. Let Yo be a field of subsets of a set Q, and let P be a 
probability measure on §0. Suppose that the sets A 1, A2, ••• belong to Yo and 
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increase to a limit A, and that the sets A1', A2', ... belong to .9'0 and increase 
to A'. (A and A' need not belong to 9().) If A c A', then 

lim P(Am) :S. lim P(An'). 
m----+oo n----+00 

Thus if An and An' both increase to the same limit A, then 

lim P(An) = lim P(An'). 
n----+00 n----+00 

PROOF. If m is fixed, Am nAn' t Am n A' =Am as n ---+ 00, hence 

P(Am nAn')---+ P(Am) 

by 1.2.7(a). But P(Am nAn') :S P(An') by 1.2.5(c), hence 

P(Am) = lim P(Am nAn') :S lim P(An'). 
n----+00 n----*00 

Let m ---+ oo to finish the proof. D 

We are now ready for the first extension of P to a larger class of sets. 

1.3.2 Lemma. Let P be a probability measure on the field §'o. Let ::9' be the 
collection of all limits of increasing sequences of sets in 9Q, that is, A E :?? 
iff there are sets An E §'o, n = 1, 2, ... , such that An t A. (Note that ::9' can 
also be described as the collection of all countable unions of sets in .9'Q; see 
1.2.1.) 

Define JL on :7' as follows. If An E §'o, n = 1, 2, ... , An t A ( E ::9'), set 
JL(A) = limn--.ooP(An); JL is well defined by 1.3.1, and JL = P on §'o. Then: 

(a) 0 E ;?? and JL(0) = 0; Q E ;?? and JL(Q) = 1; 0::: JL(A)::: 1 for all 
A E :??. 

(b) If G~o G2 E .o/, then Gt U G 2, Gt n G 2 E :?? and 

JL(Gt U G2) + JL(Gt n G2) = JL(Gt) + JL(G2). 

(c) If Gt. G2 E .o/ and G 1 c G2, then JL(Gt) :S JL(G2). 

(d) If Gn E ~. n = 1, 2, ... , and Gn t G, 

then G E :?? and jt(Gn)---+ jt(G). 

PRooF. (a) This is clear since JL = P on .9'Q and Pis a probability measure. 

(b) Let AntE §'o, Ant t Gt; An2 E 7Q, An2 t G2. We have P(Ant UAn2) 
+ P(Ant n An2) = P(Ant) + P(An2) by 1.2.5(b); let n ---+ oo to complete the 
argument. 

(c) This follows from 1.3.1. 
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(d) Since G is a countable union of sets in §?0, G E ~. Now for each 
n we can find sets Anm E §?0, m = 1, 2, ... , with Anm t Gn as m---+ 00. The 
situation may be represented schematically as follows: 

Let Dm =Atm UA2m U · · · UAmm (the Dm form an increasing sequence). 
The key step in the proof is the observation that 

for (1) 

and, therefore, 

for n ::: m. (2) 

Let m---+ oo in (1) to obtain Gn c U~=l Dm c G; then let n ---+ oo to conclude 
that Dm t G, hence P(Dm)---+ tt(G) by definition of f.L· Now let m ---+ oo in 
(2) to obtain tt(Gn) :S Iimm--->ooP(Dm) :S limm--+oott(Gm); then let n---+ 00 to 
conclude that limn--+oo tt(Gn) = limm--.oo P(Dm) = tt(G). D 

We now extend JL to the class of all subsets of Q; however, the extension 
will not be countably additive on all subsets, but only on a smaller cr-field. 
The construction depends on properties (a)-(d) of 1.3.2, and not on the fact 
that JL was derived from a probability measure on a field. We express this 
explicitly as follows: 

1.3.3 Lemma. Let ~ be a class of subsets of a set Q, JL a nonnegative 
real-valued set function on ~ such that ~ and JL satisfy the four conditions 
(a)-( d) of 1.3.2. Define, for each A c Q, 

tt*(A) = inf{tt(G): G E ~. G :>A}. 

Then: 

(a) tt* = JL on ~. 0::::; tt*(A)::: 1 for all A C Q. 

(b) tt*(A U B)+ tt*(A n B)::: tt*(A) + tt*(B); in particular, tt*(A) 
+ tt*(Ac) 2: f.L*(Q) + tt*(0) = jt(Q) + tt(0) = 1 by 1.3.2(a). 
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(c) If A c B, then tt*(A).::; tt*(B). 

(d) If An t A, then tt*(An)--+ tt*(A). 

PROOF. (a) This is clear from the definition of tt* and from 1.3.2(c). 

15 

(b) If e > 0, choose Gt. G2 E.'??, G1 :>A, G2 :> B, such that tt(Gt) 
.::; tt*(A) + e/2, tt(G2) .:S tt*(B) + e/2. By 1.3.2(b), 

tt*(A) + tt*(B) + e 2: tt(Gt) + tt(G2) = tt(Gt U G2) + tt(Gt n G2) 

2: tt*(A U B)+ tt*(A n B). 

Since e is arbitrary, the result follows. 
(c) This follows from the definition of JL *. 
(d) By (c), tt*(A) 2: limn-->oo tt*(An). If£> 0, for each n we may choose 

Gn E ~. Gn :>An, such that 

Now A = U~ 1 An C U~ 1 Gn E ~; hence 

Jk'(A),; ,.. (Q G,) by (c) 

=Jk(Qc.) by(a) 

= n~JL (u Gk) by 1.3.2(d). 
k=l 

The proof will be accomplished if we prove that 

n = 1, 2, .... 

This is true for n = 1, by choice of G 1• If it holds for a given n, we apply 
1.3.2(b) to the sets U~=l G; and Gn+l to obtain 
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Now (U7= 1 G;) n Gn+t :> Gn n Gn+l :>An nAn+! =An, so that the induc­
tion hypothesis yields 

(

n+l ) 
JL ~G; 

n 

.::; tt*(An) + e L 2-i + tt*(An+l) + £2-(n+l) - tt*(An) 
i=l 

n+l 
.:S tt*(An+l) + £ L 2-i. D 

i=l 

Our aim in this section is to prove that a cr-finite measure on a field Yo has a 
unique extension to the minimal cr-field over §i(i. In fact an arbitrary measure JL 
on Yo can be extended to cr(§'o ), but the extension is not necessarily unique. 
In proving this more general result (see Problem 3), the following concept 
plays a key role. 

1.3.4 Definition. An outer measure on Q is a nonnegative, extended real­
valued set function A on the class of all subsets of Q, satisfying 

(a) A(0) = 0, 
(b) A c B implies A(A) ::::; A(B) (monotonicity), and 
(c) A (U~ 1 An) .:S 2.::~ 1 A(An) (countable subadditivity). 

The set function tt* of 1.3.3 is an outer measure on Q. Parts 1.3.4(a) and (b) 
follow from 1.3.3(a), 1.3.2(a), and 1.3.3(c), and 1.3.4(c) is proved as follows: 

as desired. 

n 

.::; lim '""'JL *(A;) 
n---*OC L......J 

i=l 

by 1.3.3(d). 

by 1.3.3(b), 

We now identify a cr-field on which tt* is countably additive: 

1.3.5 Theorem. Under the hypothesis of 1.3.2, with tt* defined as in 1.3.3, 
let .Jg = {H c Q: tt*(H) + tt*(Hc) = 1} 
[.Jg = {H C Q: tt*(H) + tt*(Hc) .:S 1 by 1.3.3(b).] 
Then Ji.' is a cr-field and tt* is a probability measure on~ 

PROOF. First note that ~C.~ For if An E Yo and An t G E ~. then 
Gc C A~, so P(An) + tt*(Gc) .:S P(An) +P(A~) = 1. By 1.3.3(d), tt*(G) 
+ tt*(Gc) :S 1. 
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Clearly ~ is closed under complementation, and Q E ~ by 1.3.3(a) and 
1.3.2(a). If H t. H 2 C Q, then by 1.3.3(b), 

tt*(HtUH2)+tt*(HtnH2).:Stt*(Ht)+tt*(H2) (1) 

and since 

we have 

tt*(Ht UH2)c +tt*(Ht nHd.::: tt*(HD+tt*(H}). (2) 

If H t. H 2 E ~ add (1) and (2); the sum of the left sides is at least 
2 by 1.3.3(b), and the sum of the right sides is 2. Thus the sum of the left 
sides is 2 as well. If a=tt*(Ht UH2)+tt*(Ht UH2)c, h=tt*(Ht nH2) 
+ JL * (H 1 n H 2 )c, then a + b = 2, hence a _::: 1 or b _::: 1. If a _::: 1, then a = 1, 
so b = 1 also. Consequently H 1 U H 2 E ~ and H 1 n H 2 E % We have 
therefore shown that ~ is a field. Now equality holds in (1), for if not, 
the sum of the left sides of (1) and (2) would be less than the sum of the right 
sides, a contradiction. Thus tt* is finitely additive on % 

To show that~ is a cr-field, let H n E ~ n = 1, 2, ... , H n t H; tt*(H) 
+ tt*(Hc) 2: 1 by 1.3.3(b). But tt*(H) = limn--->oo tt*(Hn) by 1.3.3(d), hence 
for any£> 0, tt*(H) _::: tt*(Hn) +£for large n. Since tt*(Hc) _::: tt*(H~) for 
all n by 1.3.3(c), and Hn E ~we have tt*(H) + tt*(Hc) _::: 1 +£.Since£ is 
arbitrary, H E ~ making ~ a cr-field. 

Since tt*(Hn)---+ tt*(H), tt* is countably additive by 1.2.8(a). D 

We now have our first extension theorem. 

1.3.6 Theorem. A finite measure on a field Yo can be extended to a measure 
on cr(§i(i). 

PROOF. Nothing is lost by considering a probability measure. (Replace JL by 
ttl tt(Q) if necessary.) The result then follows from 1.3.1-1.3.5 if we observe 
that Yo C ~ C ~ hence cr(§i(i) C % Thus JL * restricted to cr(§'o) is the 
desired extension. D 

In fact there is very little difference between cr(§i(i) and ~; if B E ~ 

then B can be expressed as AU N, where A E cr(§i(i) and N is a subset of a 
set M E cr(§i(i) with tt*(M) = 0. To establish this, we introduce the idea of 
completion of a measure space. 

1.3. 7 Definitions. A measure JL on a cr-field .¥ is said to be complete iff 
whenever A E ,9' and tt(A) = 0 we have B E .¥for all B cA. 
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In 1.3.5, tt* on .)i' is complete, for if B CAE Si/5; tt*(A) = 0, then tt*(B) + 
tt*(Bc) :S tt*(A) + tt*(Bc) = tt*(B') :S 1; thus BE .5'6: 

The completion of a measure space (Q, §:-, JL) is defined as follows. Let 
~ be the class of sets AU N, where A ranges over.¥ and N over all subsets 
of sets of measure 0 in .':7. 

Now ~ is a cr-field including .¥, for it is clearly closed under countable 
union, and if A UN E .¥, N C M E .¥, tt(M) = 0, then (A U N)c = Ac n Nc 
= (Ac nMc) U (Ac n (Nc- Me)) andN' n (Nc- Me)= Ac n (M- N) C M, 
so (A UN)c E ~-

We extend JL to !TIL by setting tt(A UN)= tt(A). This is a valid definition, 
for if A1 UN1 =A2 UN2 E ~.we have 

since At -A2 C N2. Thus tt(At) :S tt(A2), and by symmetry, tt(At) = tt(A2). 
The measure space (Q, ~. tt) is called the completion of (Q, .¥, JL), and~ 
the completion of .¥relative to JL. 

Note that the completion is in fact complete, for if M c A UN E ~ where 
A E .':7, tt(A) = 0, N C B E .¥, tt(B) = 0, then M C AU B E .97, tt(A U B) 
= 0; hence M E ~. 

1.3.8 Theorem. In 1.3.6, (Q, Jii?, tt*) is the completion of (Q, cr(§?Q), tt*). 

PROOF. We must show that.% = ~· where.¥= cr(§?Q). If A E ~ by defi­
nition of tt*(A) and tt*(Ac) we can find sets Gn, Gn' E cr(§?Q), 
n = 1, 2, ... , with Gn c A c Gn' and tt*(Gn)--+ tt*(A), tt*(Gn')--+ tt*(A). 
Let G = U::O=t Gn, G' = n::O=t Gn'. Then A= G U (A- G), G E cr(9'Q), 
A- G c G'- G E cr(§'O), tt*(G'- G) :S tt*(Gn'- Gn)--+ 0, so that tt*(G' 
-G)=O. ThusA E~·· 

Conversely if BE~·, then B =AU N, A E .'7, N C ME .':7, tt*(M) = 0. 
Since .¥ C 5t:· we have A E Si/5; and since (Q, Si/5; JL *) is complete we have 
N E .Jii?. Thu;; B E:: ~~*~'( 0 

To prove the uniqueness of the extension from Yo to .¥, we need the 
following basic result. 

1.3.9 Monotone Class Theorem. Let .976 be a field of subsets of Q, and W 
a class of subsets of Q that is monotone (if An E gc·· and An t A or An ..j.. A, 
then A E ~). If 17' :> §?0, then f5 :> cr(.9'Q), the minimal cr-field over §?0. 

PROOF. The technique of the proof might be called "boot strapping." Let 
.97 = cr(§?Q) and let .J& be the smallest monotone class containing all sets of 
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§i(i. We show that A = !7, in other words, the smallest monotone class and 
the smallest cr -field over a field coincide. The proof is completed by observing 
that .At: C W. 

Fix AEA and let .. t%A={BE.Af%: AnB,AnBcandAenBE~ft}; 
then A A is a monotone class. In fact .A% A = .Aft; for if A E §i(i, then Yo C 
AA since Yo is a field, hence A C AA by minimality of .. 4'6"; consequent­
ly AA =A. But this shows that for any BE A we have An B, An Be, 
Ae n B E A for any A E §i(i, so that A 8 :> §i(i. Again by minimality of .~6, 
As=A. 

Now A is a field (for if A, BE A = AA, then An B, An Be, N n B 
E A) and a monotone class that is also afield is a cr-field (see 1.2.1), hence 
.Aft is a cr-field. Thus !7 c A by minimality of !7, and in fact .'Y =vii§ 
because !7 is a monotone class including §i(i. D 

We now prove the fundamental extension theorem. 

1.3.10 Caratheodory Extension Theorem. Let JL be a measure on the field 
Yo of subsets of Q, and assume that JL is cr-finite on §i(i, so that Q can be 
decomposed as U~ 1 An, where An E Yo and jt(An) < oo for all n. Then JL 
has a unique extension to a measure on the minimal cr-field !7 over §i(i. 

PRooF. Since Yo is a field, the An may be taken as disjoint [replace An 
by A~ n · · · nA~_ 1 nAn, as in formula (3) of 1.1]. Let Jtn(A) = JL(A nAn), 
A E .9?(i; then f.Ln is a finite measure on §i(i, hence by 1.3.6 it has an extension 
JL~ to !7. As JL = Ln f.Ln, the set function JL* = Ln JL~ is an extension of JL, 
and it is a measure on !7 since the order of summation of any double series 
of nonnegative terms can be reversed. 

Now suppose that A is a measure on !7 and A = JL on §i(i. Define An (A) 
= A(A nAn), A E !7. Then An is a finite measure on !7 and An = f.Ln = JL~ 

on §i(i, and it follows that An = JL~ on !7. For W= {A E !7: An (A)= JL~ (A)} 
is a monotone class (by 1.2.7) that contains all sets of §'o, hence W = !7 by 
1.3.9. But then A= Ln An= Ln JL~ = JL*, proving uniqueness. D 

The intuitive idea of constructing a minimal cr-field by forming complements 
and countable unions and intersections in all possible ways suggests that if 
Yo is a field and !7 = cr(§i(i), sets in !7 can be approximated in some sense 
by sets in §i(i. The following result formalizes this notion. 

1.3.11 Approximation Theorem. Let (Q, !7, JL) be a measure space, and let 
Yo be a field of subsets of Q such that cr(§i(i) = .'Y. Assume that JL is cr-finite 
on §i(i, and let£ > 0 be given. If A E .'Y and JL(A) < oo, there is a set B E Yo 
such that JL(A ~B) < e. 
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PROOF. Let ~ be the class of all countable unions of sets of Yo. The con­
clusion of 1.3.11 holds for any A E .'§', by 1.2.7(a). By 1.3.3, if JL is finite and 
A E Y, A can be approximated arbitrarily closely (in the sense of 1.3.11) by 
a set in :7', and therefore 1.3.11 is proved for finite JL. In general, let Q be the 
disjoint union of sets A, E .9#0 with JL(A,) < oo, and let f.Ln (C) = JL( C n A,), 
C EY. 

Then f.Ln is a finite measure on .27, hence if A E c'Y, there is a set B, E 90 
such that f.Ln (A ~ B,) < t:2-n. Since 

fL,(A ~B,) = JL((A ~B,) nA,) 

= JL[(A ~ (B, nA,)) nA,] = JL,(A ~ (B, nA,)), 

and B, n A, E .:?Q, we may assume that B, c A,. (The observation that B, n 
A, E 90 is the point where we use the hypothesis that JL is cr-finite on c9#Q, 
not merely on c¥".) If C = U:;"'=1 B,, then C nA, = B,, so that 

hence 

oo N 

JL(A ~C)= LJLn(A ~C)< t:. But U Bk -At C -A as N---+ 00, 

n=l k=l 

and A- U~=l Bk ..j.. A- C. If A E .'7 and JL(A) < oo, it follows from 1.2.7 
that JL(A ~ U~=l Bk)---+ JL(A ~C) as N---+ oo, hence is less than t: for large 
enough N. Set B = U~=l Bk E .97(). D 

1.3.12 Example. Let Q be the rationals, c97ii the field of finite disjoint unions 
of right-semiclosed intervals (a, b] ={wE Q: a< w _::: b}, a, b rational 
[counting (a, oo) and Q itself as right-semiclosed; see 1.2.2]. Let j7 = cr(co/o). 
Then: 

(a) .'7 consists of all subsets of Q. 

(b) If JL(A) is the number of points in A (JL is counting measure), then JL 
is cr-finite on Y but not on .9?(). 

(c) There are sets A E .Y7 of finite measure that cannot be approximated 
by sets in Yo. that is, there is no sequence A, E .97() with JL(A ~A,) ---+ 0. 

(d) If A= 2JL, then A= JL on Yo but not on Y. 

Thus both the approximation theorem and the Caratheodory extension theorem 
fail in this case. 
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PROOF. (a) We have {x} = n::o=l(x- (1/n),x], and therefore all singletons 
are in .r. But then all sets are in /JT since Q is countable. 

(b) Since Q is a countable union of singletons, JL is cr-finite on Y. But 
every nonempty set in c90 has infinite measure, so JL is not cr-finite on §i(i. 

(c) If A is any finite nonempty subset of Q, then JL(A ~B)= oo for all 
nonempty B E .9(), because any nonempty set in .9'<J must contain infinitely 
many points not in A. 

(d) Since A{x} = 2 and JL{x} = 1, A# JL on .9'. But A(A) = JL(A) 
= oo, A E .9'<J (except for A = 0). D 

Problems 

1. Let (Q, .'7, JL) be a measure space, and let ~ be the completion of .r 
relative to JL· If A c Q, define: 

Jto(A) = sup{JL(B): BE .9', B C A}, JL0 (A) = inf{JL(B): BE .9', B :>A}. 

If A E .9'/L, show that Jto(A) = JL0 (A) = JL(A). Conversely, if Jto(A) 

= JL0 (A) < oo, show that A E ~· 

2. Show that the monotone class theorem (1.3.9) fails if Yo is not assumed 
to be a field. 

3. This problem deals with the extension of an arbitrary (not necessarily 
cr-finite) measure on a field. 

(a) Let A be an outer measure on the set Q (see 1.3.4). We say that the 
set E is A-measurable iff 

A(A) = A(A n E)+ A(A n Ec) for all A c n. 
(The equals sign may be replaced by "2:," by subadditivity of A.) If 
v-/,J is the class of all A-measurable sets, show that ~i? is a cr-field, 
and that if E 1, E2 •... are disjoint sets in v#t whose union is E, and 
A c Q, we have 

(1) 
n 

In particular, A is a measuro:: on ./.C. [Use the definition of A-mea­
surability to show that .A~t: i:> u ildd and that (1) holds for finite 
sequences. If E 1, E2, ... are disjoint sets in ult and F n = U7=l E; t 
E, show that 

\A(A) 2: A(A n Fn) + A(A n g)= t A(A n E;) + A(A n Ec), 
i=l 

and then let n ---+ oo.] 
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(b) Let JL be a measure on a field Yo of subsets of Q. If A C Q, define 

Show that JL* is an outer measure on Q and that JL* = JL on §0. 

(c) In (b), if A is the class of JL *-measurable sets, show that Yo C A. 
Thus by (a) and (b), JL may be extended to the minimal cr-field over 
§0. 

(d) In (b), if JL is cr-finite on §0, show that (Q, A, JL*) is the completion 
of [Q, cr(§'o ), JL *]. 

1.4 LEBESGUE-STIELTJES MEASURES AND DISTRIBUTION FUNCTIONS 

We are now in a position to construct a large class of measures on the Borel 
sets of IRL IfF is an increasing, right-continuous function from ~to ~.we set 
JL(a, b] = F(b)- F(a); we then extend JL to a finitely additive set function 
on the field §0(~) of finite disjoint unions of right-semiclosed intervals. If we 
can show that JL is countably additive on §0(~), the Caratheodory extension 
theorem extends JL to .513'(~). 

1.4.1 Definitions. A Lebesgue-Stieltjes measure on ~ is a measure JL on 
.513'(~) such that JL(l) < oo for each bounded interval I. A distribution function 
on ~ is a map F: ~---+ ~ that is increasing [a < b implies F(a) _::: F(b)] 

and right-continuous [limx--->x+ F(x) = F(xo)]. We are going to show that the 
0 

formula JL(a, b] = F(b)- F(a) sets up a one-to-one correspondence between 
Lebesgue-Stieltjes measures and distribution functions, where two distribution 
functions that differ by a constant are identified. 

1.4.2 Theorem. Let JL be a Lebesgue-Stieltjes measure on ~. Let 
F: ~---+ ~be defined, up to an additive constant, by F(b)- F(a) = JL(a, b]. 
[For example, fix F(O) arbitrarily and set F(x)- F(O) = JL(O, x], x > 0; 
F(O)- F(x) = JL(X, 0], x < 0.] Then F is a distribution function. 

PRooF. If a< b, then F(b)- F(a) = JL(a, b].:;: 0. If {xn} is a sequence of 
points such that x 1 > x2 > · · ·---+ x, then F(xn)- F(x) = JL(X,Xn]---+ 0 by 
1.2.7(b). D 

Now let F be a distribution function on ~. It will be convenient to 
work in the compact space "i, so we extend F to a map of "i into 
"i by defining F(oo) = limx-+oo F(x), F(-oo) = limx-+-oo F(x); the limits 
exist by monotonicity. Define JL(a, b] = F(b)- F(a), a, bE "i, a< b, and 
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let JL[ -oo, b] = F(b)- F( -oo) = tt( -oo, b]; then JL is defined on all right­
semiclosed intervals of "i (counting [-oo, b] as right-semiclosed; see 1.2.2). 

If I 1, .•. , I k are disjoint right-semiclosed intervals of "i, we define 
JL{U~=l Ij) = I::~=l ttUj). Thus JL is extended to the field ._90("1) of finite 
disjoint unions of right-semiclosed intervals of "i, and JL is finitely additive 
on .9'Q("i). To show that JL is in fact countably additive on .9{i("i), we make 
use of 1.2.8(b), as follows. 

1.4.3 Lemma. The set function JL is countably additive on .9()("1). 

PRooF. First assume that F ( oo) - F ( -oo) < oo, so that JL is finite. Let 
A 1,A2, ... be a sequence of sets in .9{i("i) decreasing to 0. If (a, b] is one 
of the intervals of An, then by right continuity ofF, JL(a', b] = F(b)- F(a') 
--+ F(b)- F(a) = tt(a, b] as a'--+ a from above. 

Thus we can find sets Bn E .90("1) whose closures Bn (in "i) are included 
in An, with tt(Bn) approximating tt(An ). If£ > 0 is given, the finiteness of JL 
allows us to choose the Bn so that tt(An) - tt(Bn) < e2-n. Now n~1 Bn = 0, 
and it follows that n~=t Bk = 0 for sufficiently large n. (Perhaps the easiest 
way to see this is to note that the sets "i - Bn form an open covering of the 
compact set "i~ hence there is a finite subcovering, so that U~=t (R.- Bd = "i 
for some n. Therefore n~=t Bk = 0.) Now 

An C An-t c · · · c A 1 

n 

::: L tt(Ak- Bk) by 1.2.5(d) 
k=l 

< £. 

Thus tt(A,)--+ 0. 
Nowifli;(oo)- F(-oo) = oo, defineFn(x) = F(x), lxl _::: n; Fn(x) = F(n), 

x 2: n; Fn()c) = F(-n), x _::: -n. If Jtn is the set function corresponding to 
F n, then Jtn :S JL and Jtn --+ JL on .9{i("i). Let A 1, A2, ... be disjoint sets in 
.9{i("i) such that A = u~l An E §?O("i). Then tt(A) .2: L~l tt(An) 



24 1 FUNDAMENTALS OF MEASURE AND INTEGRATION THEORY 

(Problem 5, Section 1.2) soifl.::::O=l tt(An) = oo, we are finished. Ifl.::::O=l tt(An) 
< oo, then 

jt(A) = lim Jtn(A) 
n-->oo 

since the Jtn are finite. Now as 2.::~ 1 tt(Ak) < oo, we may write 

00 

0.::: tt(A)- L tt(Ak) 
k=l 

00 

= lim ""[ttn(Ak)- tt(Ak)] 
n---;..oo L.....J 

k=! 

since 

We now complete the construction of Lebesgue-Stieltjes measures. 

1.4.4 Theorem. Let F be a distribution function on ~' and let JL(a, b] 
= F(b)- F(a), a < b. There is a unique extension of JL to a Lebesgue-Stieltjes 
measure on ~-

PROOF. Extend JL to a countably additive set function on 9Q(i) as above. 
Let .976(~) be the field of all finite disjoint unions of right-semiclosed inter­
vals of~ [counting (a, oo) as right-semiclosed; see 1.2.2], and extend JL to 
9"0(~) as in the discussion that follows 1.4.2. [Take tt(a, oo) = F(oo)- F(a); 
tt(-oo, b] = F(b)- F(-oo), a, bE~; JL(~) = F(oo)- F(-oo); note that 
there is no other possible choice for JL on these sets, by 1.2.7(a).] Now the map 

(a,b]---+(a,b]. if a,bE~ orif bE~, a=-oo, 

(a,oo]---+(a,oo) if aE~ or if a= -oo 

sets up a one-to-one, JL-preserving correspondence between a subset of .97Q(i) 
(everything in .97Q(i) except sets including intervals of the form [ -oo, b]) 
and .976(~). It follows that JL is countably additive on .976(~). Furthermore, 
JL is cr-finite on .976(~) since JL(-n, n] < oo; note that JL need not be cr­
finite on .97Q(i) since the sets (-n, n] do not cover "i. By the Caratheodory 
extension theorem, JL has a unique extension to 17'(~). The extension is 
a Lebesgue-Stieltjes measure because tt(a, b] = F(b)- F(a) < oo for a, b 
E ~.a< b. 0 
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1.4.5 Comments and Examples. IfF is a distribution function and JL the cor­
responding Lebesgue-Stieltjes measure, we have seen that JL(a, b] 
= F(b)- F(a), a < b. The measure of any interval, right-serniclosed or not, 
may be expressed in terms of F. For if F(x-) denotes limy--.x F(y), then 

(1) JL(a, b] = F(b)- F(a), 

(2) JL(a, b)= F(b-)- F(a), 

(3) JL[a, b] = F(b)- F(a-), 

(4) JL[a, b)= F(b-)- F(a-). 

(Thus if F is continuous at a and b, all four expressions are equal.) For 
example, to prove (2), observe that 

JL(a,b)= lim JL(a,b-.!_] =lim [F(b-.!_) -F(a)] =F(b-)-F(a). 
n---+00 n n---+00 n 

Statement (3) follows because 

JL[a, b] = lim JL(a- .!_, b] = lim [F(b)- F(a- .!_)] = F(b)- F(a-); 
n---+00 n n---+00 n 

(4) is proved similarly. The proof of (3) works even if a= b, so that 
JL{x} = F(x)- F(x-). Thus 

(5) F is continuous at x iff JL{X} = 0; the magnitude of a discontinuity of 
F at x coincides with the measure of {x}. 

The following formulas are obtained from (1)-(3) by allowing a to approach 
-oo orb to approach +oo. 

(6) JL(-oo,x] = F(x)- F(-oo), 

(7) JL(-oo,x) = F(x-)- F(-oo), 

(8) JL(X, oo) = F(oo)- F(x), 

(9) JL[X, oo) = F(oo)- F(x-), 

(10) JL(IR) = F(oo)- F(-oo). 

(The formulas (6), (8), and (10) have already been observed in the proof of 
1.4.4.) 

If JL is finite, then F is bounded; since F may always be adjusted by an 
additive constant, nothing is lost in this case if we set F ( -oo) = 0. 

We may now generate a large number of measures on .%'(1R). For example, 
if f: IR ---+ IR, f :::::. 0, and f is integrable (Riemann for now) on any finite 
interval, then if we fix F(O) arbitrarily and define 

\ F(x)- F(O) = lx f(t)dt, 

F(O)- F(x) = 1° f(t)dt, 

X> 0; 

X< 0, 
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then F is a (continuous) distribution function and thus gives rise to a 
Lebesgue-Stieltjes measure; specifically, 

b 

tt(a, b] = 1 f(x)dx. 

In particular, we may take f(x) = 1 for all x, and F(x) = x; then JL(a, b] 
= b- a. The set function JL is called the Lebesgue measure on .j)'(~). The 
completion of ._%'(~) relative to Lebesgue measure is called the class of 
Lebesgue measurable sets, written J!J (~). Thus a Lebesgue measurable set 
is the union of a Borel set and a subset of a Borel set of Lebesgue measure 
0. The extension of Lebesgue measure to J!J (~) is also called "Lebesgue 
measure." 

Now let JL be a Lebesgue-Stieltjes measure that is concentrated on a 
countable sets= {Xt. X2, .• . }, that is, jt(~- S) = 0. [In general if en, !7, jt) 
is a measure space and B E .r, we say that JL is concentrated on B iff 
tt(O- B)= 0.] In the present case, such a measure is easily constructed: 
If a 1, a2, ... are nonnegative numbers and A C ~.set tt(A) = l.::{a;: x; E A}; 
JL is a measure on all subsets of~. not merely on the Borel sets (see 1.2.4). If 
ttU) < oo for each bounded interval I, JL will be a Lebesgue-Stieltjes mea­
sure on ._%'(~); if L; a; < oo, JL will be a finite measure. The distribution 
function F corresponding to JL is continuous on ~- S; if JL{Xn} =an > 0, F 
has a jump at Xn of magnitude an. If x, y E S and no point of S lies between 
x and y, then F is constant on [x, y). For if x::; b < y, then F(b)- F(x) = 
JL(X, b] = 0. 

Now if we take S to be the rational numbers, the above discussion yields a 
monotone function F from ~ to ~ that is continuous at each irrational point 
and discontinuous at each rational point. 

If F is an increasing, right-continuous, real-valued function defined on a 
closed bounded interval [a, b ], there is a corresponding finite measure JL on 
the Borel subsets of [a, b]; explicitly, JL is determined by the requirement 
that tt(a', b'] = F(b')- F(a'), a::; a'< b'::; b. The easiest way to estab­
lish the correspondence is to extend F by defining F(x) = F(b), x 2: b; F(x) 
= F(a), x ::; a; then take JL as the Lebesgue-Stieltjes measure corresponding 
to F, restricted to 11[a, b]. 

We are going to consider Lebesgue-Stiel1jes measures and distribution 
functions in Euclidean n-space. First, some terminology is required. 

1.4.6 Definitions and Comments. If a = (a 1, ... , an), b = (ht, ... , bn) 
E ~n, the interval (a, b] is defined as {x = (x 1, .. • ,Xn) E ~n: a;< X; 
::; b; for all i = 1, ... , n }; (a, oo) is defined as {x E ~n: X; > a; for all 
i = 1, ... , n}, (-oo, b] as {x E ~n: X;::; b; for all i = 1, ... , n}; other types 
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of intervals are defined similarly. The smallest cr-field containing all inter­
vals (a, b], a, bE ~n, is called the class of Borel sets of ~n, written ._%'(~n ). 
The Borel sets form the minimal cr-field over many other classes of sets, for 
example, the open sets, the intervals [a, b), and so on, exactly as in the dis­
cussion of the one-dimensional case in 1.2.4. The class of Borel sets of "in, 
written .%'(in), is defined similarly. 

A Lebesgue-Stieltjes measure on ~ n is a measure JL on ._%' (~ n) such that 
JL(l) < oo for each bounded interval I. 

The notion of a distribution function on ~n, n ::=: 2, is more complicated than 
in the one-dimensional case. To see why, assume for simplicity that n = 3, 
and let JL be a finite measure on ._%' (~ 3 ). Define 

By analogy with the one-dimensional case, we expect that F is a distribution 
function corresponding to f.L [see formula (6) of 1.4.5]. This will tum out 
to be correct, but the correspondence is no longer by means of the formula 
JL(a, b] = F(b)- F(a). To see this, we compute JL(a, b] in terms of F. 

Introduce the difference operator 6_ as follows: 
If G: ~ n --+ ~. 6. b,a, G(xl' ... ' Xn) is defined as 

G(xl, ... , Xi-h b,., Xi+l• ... , Xn)- G(xl, ... , Xi- I> a,.,xi+h ... , Xn)· 

1.4.7 Lemma. If a::; b, that is, a; :S b1, i = 1, 2, 3, then 

(a) JL(a, b] = Ab Ab Ab F(xh x2, x3), where D 1a 1 D zazD 3a3 

(b) 

= F(b~> b2, b3)- F(a1, b2, b3)- F(b~> a2, b3)- F(b1, b2, a3) 

+ F(a~> a2, b3) + F(a1, b2, a3) + F(b1, a2, a3)- F(a1, a2, a3) 

Thus JL(a, b] is not simply F(b)- F(a). 

PROOF. 

(a) 

\ - JL{W: W1 :S X1, W2 :S X2, W3 :S a3} 

= JL{W: W1 :S X1, W2 :S X2, a3 < W3 :S b3} 

since a3 :S b3. 
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Similarly, 

and 

Ab Ab Ab F(Xt, X2, X3) = jt{w: a1 < Wt :S ht, a2 < W2 :S b2, D ra1D 2a2D 3a3 

a3 < w3 :S b3}. 

(b) 

The extension of 1.4.7 ton dimensions is clear. 

1.4.8 Theorem. Let JL be a finite measure on ..%'(~n) and define 

F(x) = tt(-oo, x] = JL{W: W; :S x;, i = 1, ... , n}. 

If a .:S b, then 

(a) tt(a,b]= Ab ··· Ab F(xt.····Xn),where 
i...j. rar i...j. nan 

(b) Ab ··· Ab F(xJ, ... ,Xn) = Fo-Ft+F2-···+(-1tFn; D ]Gl D nan 

F; is the sum of all (7) terms of the form F(c1, •.. , Cn) with ck = ak for 
exactly i integers in { 1, 2, ... , n }, and ck = bk for the remaining n - i integers. 

PRooF. Apply the computations of 1.4.7. D 

We know that a distribution function of ~ determines a corresponding 
Lebesgue-Stieltjes measure. This is true in n dimensions if we change the 
definition of increasing. 

Let F: ~n --+ ~. and, for a :S b, let F(a, b] denote 

The function F is said to be increasing iff F(a, b] ::=: 0 whenever a :S b; 
F is right-continuous iff it is right-continuous in all variables together, 
in other words, for any sequence x 1 :::: x2 :::: · · · :::: xk :::: · · · --+ x we have 
F(xk)--+ F(x). 
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An increasing right-continuous F: ~n ---+ ~ is said to be a distribution 
function on ~n. (Note that ifF arises from a measure JL as in 1.4.8, F is a 
distribution function.) 

IfF is a distribution function on ~n, we set JL(a, b] = F(a, b] [this reduces 
to F(b)- F(a) if n = 1]. We are going to show that JL has a unique extension 
to a Lebesgue-Stieltjes measure on ~n. The technique of the proof is the 
same in any dimension, but to avoid cumbersome notation and to capture 
the essential ideas, we sometimes specialize to the case n = 2. We break the 
argument into several steps: 

(1) If a ~ a' :S b' :S b, I = (a, b] is the union of the nine disjoint inter­
vals I 1 , ••. , I 9 formed by first constraining the first coordinate in one of the 
following three ways: 

and then constraining the second coordinate in one of the following three 
ways: 

For example, a typical set in the union is 

in n dimensions we would obtain 3n such sets. 
Result (1) may be verified by looking at Fig. 1.4.1. 

(2) In (1), F(l) = "Ej=l F(Ij), hence a~ a'~ b' ~ b implies F(a', b'] 
:S F(a, b]. 

This is verified by brute force, using 1.4. 8. 
Now a right-semiclosed interval (a, b] in "in is, by convention, a set of 

the form {(x1, ••• , Xn ): a; <X; :S b;, i = 1, ... , n }, a, bE "in, with the provi­
so that a; < x; :S b; can be replaced by a; :S x; :S b; if a; = -oo. With this 
assumption, the set Yo("in) of finite disjoint unions of right-semiclosed in­
tervals is a field. (The corresponding convention in ~ n is that a; < x; ~ b; 
can be replaced by a; < x; < b; if b; = +oo. Both conventions are dictated 
by considerations similar to those of the one-dimensional case; see 1.2.2.) 

(3) If a and b belong to "in but not to ~ n, we define F (a, b] as the limit 
of F(a', b'] where a', b' E ~n, a' decreases to a, and b' increases to b. [The 
definition is sensible because of the monotonicity property in (2).] Similarly 
if a E ~~,bE "in - ~n, we take F(a, b] = limb'tb F(a, b']; if a E "in - ~n, 
bE ~n, P{a, b] = Iima'ta F(a', b]. 

Thus we define JL on right-semiclosed intervals of "in; JL extends to a finitely 
additive set function on .:?Q("in ), as in the discussion after 1.4.2. [There is a 
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b2 ~--------,---------~--------~ 

b2'~--------~---------+---------1 

a2' ~--------4----------+--------~ 

a2 L---------~--------~----------L-~ 
a, 

I 

X 

Figure 1.4.1. 

b ' I 

slight problem here; a given interval I may be expressible as a finite disjoint 
union of intervals I 1, ..• , I" so that for the extension to be well defined we 
must have F(I) = LJ=! F(I j ); but this follows just as in (2).] 

(4) The set function JL is countably additive on 9Q(in). 
First assume thatJ.~,(llt) is finite. If a E ~n. F(a', b]--+ F(a, b] as a' decreas­

es to a by the right-continuity ofF and 1.4.8(b); if a E "in - ~n, the same result 
holds by (3). The argument then proceeds word for word as in 1.4.3. 

Now assume J.~,("in) = oo. Then F, restricted to Ck = {x: -k <X;::; k, 
i = 1, ... , n}, induces a finite-valued set function f.Lk on jlQ("in) that is con­
centrated on Ck. so that f.Lk(B) = f.Lk(B n Ck), BE .97Q("in). Since f.Lk::; JL and 
f.Lk --+ JL on jlQ("in ), the proof of 1.4.3 applies verbatim. 

1.4.9 Theorem. Let F be a distribution function on ~n, and let 
JL(a, b] = F(a, b], a, bERn, a::; b. There is a unique extension of JL to a 
Lebesgue-Stieltjes measure on ~n. 

PROOF. Repeat the proof of 1.4.4, with appropriate notational changes. For 
example, in extending JL to .976(~ n ), the field of finite disjoint unions of right­
semiclosed intervals of ~n, we take (say for n = 3) 

f..l,{(x, y, z): a1 < x :S b1, a2 < y < oo, a3 < z < oo} = lim F(a, b]. 
b2,b3--+ 00 
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The one-to-one JL-preserving correspondence is given by 

(a, b]---+ (a, b] if a, bE ~n 

or if b E ~ n and at least one component of 

a is -oo; 

also, if the interval { (x1, ••• , Xn ): a; < x1 :S b1: i = 1, ... , n} has some 
b1 = oo, the corresponding interval in ~n has a1 < x1 < oo. The remainder 
of the proof is as before. D 

1.4.10 Examples. (a) Let F 1, F 2, ... , F n be distribution functions on ~. 
and define F(xt. ... ,Xn) = F 1(x 1)F2(x2)· · · Fn(Xn). Then F is a distribution 
function on ~ n since 

n 

F(a, b] = fi[F;(b1)- F;(a!)]. 
i=! 

In particular, if F;(x1) = x;, i = 1, ... , n, then each F1 corresponds to Lebes­
gue measure on ~(~). In this case we have F(x 1, ••• , Xn) = x 1x2 • • • Xn and 
JL(a, b] = F (a, b] = IT7= 1 (b1 - a1 ). Thus the measure of any rectangular box is 
its volume; JL is called Lebesgue measure on ..5fJ (~ n ). Just as in one dimension, 
the completion of ..SfJ(~n) relative to Lebesgue measure is called the class of 
Lebesgue measurable sets in Rn, written ..SfJ(~n ). 

(b) Let f be a nonnegative function from ~n to ~such that 

1
00 

· • ·100 

f(x!, ... , Xn)dx! · · · dxn < 00. 
-oo -oo 

(For now, we assume the integration is in the Riemann sense.) Define 

F(x) = j f(t)dt, 
(-oo.x] 

that is, 
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and we find by repeating this computation that 

1bl 1bn 
F(a, b] = · · · f(tl, ... , tn)dt! · · · dtn. 

Ot On 

Thus F is a distribution function. If JL is the Lebesgue-Stieltjes measure 
determined by F, we have 

JL(a, b] = r f(x)dx. 
J(a,b] 

We have seen that ifF is a distribution function on ~n, there is a unique 
Lebesgue-Stieltjes measure determined by JL(a, b] = F(a, b], a::= b. Also, 
if JL is a finite measure on ._%'(~n) and F(x) = JL(-oo, x], x E ~n, then F 
is a distribution function on ~n and JL(a, b] = F(a, b], a :S b. It is possi­
ble to associate a distribution function with an arbitrary Lebesgue-Stieltjes 
measure on ~n, and thus establish a one-to-one correspondence between 
Lebesgue-Stieltjes measures and distribution functions, provided distribution 
functions with the same increments F(a, b], a, bE ~n, a :S b, are identified. 
The result will not be needed, and the details are quite tedious and will be 
omitted. 

The following result shows that under appropriate conditions, a Borel set 
can be approximated from below by a compact set, and from above by an 
open set. 

1.4.11 Theorem. If JL is a cr-finite measure on ._%'(~n), then for each 
B E ._%'(~n ), 

(a) JL(B) = sup{JL(K): K c B, K compact}. 
If JL is in fact a Lebesgue- Stieltjes measure, then 
(b) JL(B) = inf{JL(V): V :> B, B open}. 
(c) There is an example of a cr-finite measure on ._%'(~n) that is not a 

Lebesgue-Stieltjes measure and for which (b) fails. 

PRooF. 
(a) First assume that JL is finite. Let W be the class of subsets of ~n having 

the desired property; we show that W is a monotone class. Indeed, 
let Bn E W, Bn t B. Let Kn be a compact subset of Bn with JL(Bn) 
:S JL(Kn) + t:, t: > 0 preassigned. By replacing Kn by U7== 1 K;, we may 
assume the Kn form an increasing sequence. Then JL(B) = limn-->oo JL(Bn) 
:S limn--+oo JL(Kn) + t:, so that 

JL(B) = sup{JL(K): K a compact subset of B}, 
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and B E W. If Bn E W, Bn ..j, B, let Kn be a compact subset of Bn such 
that JL(Bn) :S JL(Kn) + £2-n, and set K = n~ 1 Kn. Then 

I'(B)- I'(K)~I'(B- K) :"I' (9. (B" - K")) :" ~I'(B" - K") :" e; 

thus B E ?P. Therefore W is a monotone class containing all finite disjoint 
unions of right-semiclosed intervals (a right-semiclosed interval is the 
limit of an increasing sequence of compact intervals). Hence f? contains 
all Borel sets. 

If JL is cr-finite, each B E JW(~n) is the limit of an increasing sequence 
of sets B; of finite measure. Each B; can be approximated from within 
by compact sets [apply the previous argument to the measure given by 
JL;(A) = JL(A nB;),A E JW(~n)], and the preceding argument that fP is 
closed under limits of increasing sequences shows that B E ?P. 

(b) We have JL(B)::; inf{JL(V): V :> B, V open} 
::; inf{JL(W): W :> B, W = Kc, K compact}. 

If JL is finite, this equals JL(B) by (a) applied to Be, and the result follows. 

Now assume JL is an arbitrary Lebesgue-Stieltjes measure, and write 
~n = U~ 1 Bb where the Bk are disjoint bounded sets; then Bk c Ck 
for some bounded open set Ck· The measure f.Lk(A) = JL(A n Ck), 
A E JW(~n ), is finite; hence if B is a Borel subset of Bk and e > 0, 
there is an open set Wk :> B such that f.Lk(Wk)::; f.Lk(B) + &2-k. Now 
Wk n Ck is an open set Vk and B n Ck = B since B c Bk c Ck; hence 
JL{Vk) :S JL(B) + &2-k. For any A E JW(~n ), let Vk be an open set 
with Vk :>An Bk and JL(Vk) :S JL(A n Bk) + &2-k. Then V = U~1 Vk 
is open, V :>A, and JL(V) :S 2.::~ 1 JL{Vk) :S JL(A) + £. 

(c) Construct a measure JL on Jf3'(~) as follows. Let f.L be concentrated 
on S = {1/n: n = 1, 2, ... } and take JL{l/n} = 1/n for all n. Since 
~ = U~d1/n} Usc and JL(Sc) = 0, JL is cr-finite. Since 

00 1 
JL[O, 1] = L- = 00, 

n 
n=l 

JL is not a Lebesgue-Stieltjes measure. Now JL{O} = 0, but if V is an 
open set containing 0, we have 

JL(V) ::=: JL(-£, e) 

00 1 

::::2:k 
k=r 

=00. 

for some e 

for some r 
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Thus (b) fails. [Another example: Let tt(A) be the number of rational 
points in A.] 

Problems 

1. Let F be the distribution function on ~ given by F (x) = 0, x < -1; 
F(x) = 1 + x, -1 ::= x < 0; F(x) = 2 + x2

, 0 ::= x < 2; F(x) = 9, x:::: 
2. If JL is the Lebesgue-Stieltjes measure corresponding to F, compute 
the measure of each of the following sets: 

(a) {2}, (d) [o. ~) u (1, 21. 

(b) [-~. 3), (e) {x: lxl + 2x2 > 1}. 
(c) (-1,0]U(1,2), 

2. Let JL be a Lebesgue-Stieltjes measure on ~ corresponding to a con­
tinuous distribution function. 

(a) If A is a countable subset of ~. show that tt(A) = 0. 
(b) If tt(A) > 0, must A include an open interval? 
(c) If tt(A) > 0 and JL(~- A)= 0, must A be dense in ~? 
(d) Do the answers to (b) or (c) change if JL is restricted to be Lebesgue 

measure? 

3. If B is a Borel set in ~nand a E ~n, show that a +B ={a +x: x E B} 
is a Borel set, and -B = {-x: x E B} is a Borel set. (Use the good sets 
principle.) 

4. Show that if B E YJ (~n ), a E ~n, then a+ B E YJ (~n) and JL(a +B) 
= tt(B), where JL is Lebesgue measure. Thus Lebesgue measure is 
translation-invariant. (The good sets principle works here also, in con­
junction with the monotone class theorem.) 

5. Let JL be a Lebesgue-Stieltjes measure on ._%'(~n) such that JL(a +I) 
= tt(I) for all a E Rn and all (right-semiclosed) intervals I in Rn. In 
other words, JL is translation-invariant on intervals. Show that JL is a 
constant times Lebesgue measure. 

6. (A set that is not Lebesgue measurable) Call two real numbers x and 
y equivalent iff x - y is rational. Choose a member of each distinct 
equivalence class Bx = {y: y- x rational} to form a set A (this requires 
the axiom of choice). Assume that the representatives are chosen so that 
A c [0, 1]. Establish the following: 

(a) If r and s are distinct rational numbers, (r +A) n (s +A) = 0; 
also ~ = U{r +A: r rational}. 

(b) If A is Lebesgue measurable (so that r +A is Lebesgue measurable 
by Problem 4 ), then tt(r +A) = 0 for all rational r (tt is Lebesgue 
measure). Conclude that A cannot be Lebesgue measurable. 
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The only properties of Lebesgue measure needed in this problem are 
translation-invariance and finiteness on bounded intervals. Therefore, 
the result implies that there is no translation-invariant measure A (except 
A = 0) on the class of all subsets of ~ such that A(l) < oo for each 
bounded interval I. 

7. (The Cantor ternary set) Let E 1 be the middle third of the interval [0, 1], 
that is, E 1 = (~,%);thus x E [0, 1]- E 1 iff x can be written in ternary 
form using 0 or 2 in the first digit. Let E2 be the union of the middle 
thirds of the two intervals that remain after E 1 is removed, that is, E2 
= (!, ~) U G.~); thus x E [0, 1]- (E1 UE2) iff x can be written in 
ternary form using 0 or 2 in the first two digits. Continue the construc­
tion; let En be the union of the middle thirds of the intervals that remain 
after E t. ... , En _1 are removed. The Cantor ternary set C is defined 
as [0, 1]- u~=l En; thus X E c iff X can be expressed in ternary form 
using only digits 0 and 2. Various topological properties of C follow 
from the definition: C is closed, perfect (every point of C is a limit 
point of C), and nowhere dense. 

Show that Cis uncountable and has Lebesgue measure 0. 

Comment. In the above construction, we have m(En) = 0) (%r-l, 
n = 1, 2, ... , where m is Lebesgue measure. If 0 <a < 1, the 
procedure may be altered slightly so that m(En) = a(~r. We then 
obtain a set C(a), homeomorphic to C, of measure 1 -a; such sets are 
called Cantor sets of positive measure. 

8. Give an example of a function F: ~2 -+ ~ such that F is right-conti­
nuous and is increasing in each coordinate separately, but F is not a 
distribution function on ~ 2. 

9. A distribution function on ~ is monotone and thus has only countably 
many points of discontinuity. Is this also true for a distribution function 
on ~n, n > 1? 

10. (a) Let F and G be distribution functions on ~n. If F(a, b] = G(a, b] 
for all a, b E ~n, a::= b, does it follow that F and G differ by a 
constant? 

(b) Must a distribution function on ~n be increasing in each coordinate 
separately? 

* 11. If c is the cardinality of the reals, show that there are only c Borel 
subsets of ~n, but 2c Lebesgue measurable sets. 

1.5 M~sURABLE FuNcTioNs AND INTEGRATION 

Iff is a'real-valued function defined on a bounded interval [a, b] of reals, 
we can talk about the Riemann integral of f, at least if f is piecewise contin­
uous. We are going to develop a much more general integration process, one 
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that applies to functions from an arbitrary set to the extended reals, provided 
that certain "measurability" conditions are satisfied. 

Probability considerations may again be used to motivate the concept of 
measurability. Suppose that (Q, Y, P) is a probability space, and that h is a 
function from n to "i. Thus if the outcome of the experiment corresponds 
to the point wE n, we may compute the number h(w). Suppose that we are 
interested in the probability that a ::= h(w) ::= b, in other words, we wish to 
compute P{w: h(w) E B} where B =[a, b]. For this to be possible, the set 
{w: h(w) E B} = h- 1(B) must belong to the cr-field .r. If h- 1(B) E .r for 
each interval B (and hence, as we shall see below, for each Borel set B), then 
h is a "measurable function," in other words, probabilities of events involving 
h can be computed. In the language of probability theory, h is a "random 
variable." 

1.5.1 Definitions and Comments. If h: 0 1 --+ 0 2, his measurable relative 
to the cr-fields §} of subsets of n j. j = 1, 2, iff h- 1 (A) E §il for each A E $12. 

It is sufficient that h -! (A) E §?i for each A E W, where 't? is a class of subsets 
of 0 2 such that the minimal cr-field over '15 is 92. For {A E $12: h- 1 (A) E §?i} 
is a cr-field that contains all sets of W, hence coincides with 92. This is another 
application of the good sets principle. 

The notation h: (Qt. §?i)--+ (02, §2) will mean that h: 0 1 --+ 0 2, mea­
surable relative to J7i and .9?2. 

If .r is a cr-field of subsets of n, (Q, .97) is sometimes called a measurable 
space, and the sets in .rare sometimes called measurable sets. 

Notice that measurability of h does not imply that h(A) E .3#2 for each 
A E .9!. For example, if 92 = {0, 0 2}, then any h: 0 1 --+ 0 2 is measurable, 
regardless of .'V;, but if A E .9'1 and h(A) is a nonempty proper subset of 0 2, 

then h(A) ¢ $12. Actually, in measure theory, the inverse image is a much 
more desirable object than the direct image since the basic set operations are 
preserved by inverse images but not in general by direct images. Specifical­
ly, we have h-l (U; B;) = U; h- 1(B;), h-l (n B;) = n h- 1(B;), and h- 1(Bc) 

= [h-l (BW. We also have h (U; B;) = U; h(A; ), but h (ni A;) c ni h(A; ), and 
the inclusion may be proper. Furthermore, h(A c) need not equal [ h(A) ]c, in fact 
when h is a constant function the two sets are disjoint. 

If (Q, .97) is a measurable space and h: n --+ ~n (or "in), h is said to be 
Borel measurable [on (Q, .97)] iff h is measurable relative to the cr-fields .r 
and .;il, the class of Borel sets. If n is a Borel subset of ~k (or "ik) and we 
use the term "Borel measurable," we always assume that .r =.:fl. 

A continuous map h from ~k to ~n is Borel measurable; for if '15' is the 
class of open subsets of ~n, then h- 1 (A) is open, hence belongs to .J6'(~k), 
for each A E '0'. 
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If A is a subset of ~ that is not a Borel set (Section 1.4, Problems 6 and 
11) and lA is the indicator of A, that is, IA (w) = 1 for wE A and 0 for w rt- A, 
then lA is not Borel measurable; for {w: IA(w) = 1} =Art-._%'(~). 

To show that a function h: n ---+ ~ (or "i) is Borel measurable, it is sufficient 
to show that {w: h(w) > c} E .r for each real c. For if W is the class of 
sets {x: x > c}, c E ~.then cr(gc") = ut5'(~). Similarly, {w: h(w) > c} can be 
replaced by {w: h(w) 2: c}, {w: h(w) < c} or {w: h(w) :S c}, or equally well 
by {w: a::; h(w) :S b} for all real a and b, and so on. 

If (Q, .r, JL) is a measure space the terminology "h is Borel measurable 
on (Q, .'7, JL)'' will mean that h is Borel measurable on (Q, Y) and JL is a 
measure on .r. 

1.5.2 Definition. Let (Q, .7) be a measurable space, fixed throughout the 
discussion. If h: n ---+ "i, h is said to be simple iff h is Borel measurable and 
takes on only finitely many distinct values. Equivalently, his simple iff it can 
be written as a finite sum I::~= I xJA, where the A; are disjoint sets in .rand 
IA

1 
is the indicator of A;; the x1 need not be distinct. 

We assume the standard arithmetic of "i; if a E ~. a+ oo = oo, a- oo 
= -oo, ajoo = aj-oo = 0, a· oo = oo if a> 0, a· oo = -oo if a< 0, 
0 · oo = 0 · (-oo) = 0, oo + oo = oo, -oo - oo = -oo, with commutativity 
of addition and multiplication. It is then easy to check that sums, differences, 
products, and quotients of simple functions are simple, as long as the 
operations are well-defined, in other words we do not try to add +oo and 
-oo, divide by 0, or divide oo by oo. 

Let JL be a measure on .¥, again fixed throughout the discussion. If h: 
n ---+ i: is Borel measurable we are going to define the abstract Lebesgue inte­
gral of h with respect to JL, written as In hdjt, In h(w)tt(dw), or In h(w)dtt(w). 

1.5.3 Definition of the Integral. First let h be simple, say h = L~=l xJA, 
where the A; are disjoint sets in .7. We define 

as long as +oo and -oo do not both appear in the sum; if they do, we say 
that the integral does not exist. Strictly speaking, it must be verified that if h 
has a different representation, say LJ=I yjls

1
, then 

~ r s 

LX;jt(A;) = LYjtt(B;). 
i=l j=l 
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(For example, if A= B U C, where B n C = 0, then x!A =xis +xlc.) The 
proof is based on the observation that 

r 

h = L L ZijlA,nB1 , 

i=l j=! 

where Zij = x; = Yj· Thus 

LZijtt(A; n Bj) = 2:x; Ltt(A; n Bj) 
i,j 

by a symmetrical argument. 

If h is nonnegative Borel measurable, define 

simple, 

This agrees with the previous definition if h is simple. Furthermore, we may 
if we like restrict s to be finite-valued. 

Notice that according to the definition, the integral of a nonnegative Borel 
measurable function always exists; it may be +oo. 

Finally, if his an arbitrary Borel measurable function, let h+ = max(h, 0), 
h- = max(-h, 0), that is, 

h+(w) = h(w) 

h-(w) = -h(w) 

if h(w):::: 0; 

if h(w)::; 0; 

h+(w) = 0 

h-(w)=O 

if h(w) < 0; 

if h(w) > 0. 

The function h+ is called the positive part of h, h- the negative part. 
We have I hi = h+ + h-, h = h+ - h-, and h+ and h- are Borel measurable. 
For example, {w: h+(w) E B} = {w: h(w):::: 0, h(w) E B} U {w: h(w) < 0, 
OE B}. The first set is h- 1[0,oo] nh- 1(B) E.97; the second is h- 1[-oo,O) 
if OEB, and 0 if O¢B. Thus (h+)- 1(B)EY for each BE.%'(~), 
and similarly for h-. Alternatively, if h1 and h2 are Borel measurable, then 
max(h1, h2) and min(h1, h2) are Borel measurable; to see this, note that 

{w: max(h1 (w), h2(w))::; c} = {w: h 1 (w)::; c} n {w: h2(w) :S c} 

and {w: min(h1(w), h2(w)::; c} = {w: h1(w)::; c} U {w: h2(w)::; c}. It fol­
lows that if h is Borel measurable, so are h+ and h-. 
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We define 

if this is not of the form +oo -oo; 

if it is, we say that the integral does not exist. The function h is said to be 
JL-integrable (or simply integrable if JL is understood) iff fn hdf.L is finite, 
that is, iff fn h+ df.L and fn h- df.L are both finite. 

If A E .r, we define 

(The proof that hi A is Borel measurable is similar to the first proof above that 
h+ is Borel measurable.) 

If h is a step function from ~ to ~ and JL is Lebesgue measure, fiR h df.L 
agrees with the Riemann integral. However, the integral of h with respect to 
Lebesgue measure exists for many functions that are not Riemann integrable, 
as we shall see in 1.7. 

Before examining the properties of the integral, we need to know more about 
Borel measurable functions. One of the basic reasons why such functions are 
useful in analysis is that a pointwise limit of Borel measurable functions is 
still Borel measurable. 

1.5.4 Theorem. If h1, h2, ••. are Borel measurable functions from n to ~ 
and hn (w) -+ h(w) for all w E n, then h is Borel measurable. 

PRooF. It is sufficient to show that {w: h(w) > c} E !7 for each real c. We 
have 

{w: h(w) > c} = {w: lim hn(w) > c} 
n-->00 

= { w: hn(w) is eventually> c +~for some r = 1, 2, .. ·} 

= Q { w: hn (w) > c + ~ for all but finitely many n} 

= lJ li~inf{w: hn(w) > c + ~} 
~ r=! 

. = Q nQ l5 { w: hk(w) > c + ~} E !7. D 
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To show that the class of Borel measurable functions is closed under alge­
braic operations, we need the following basic approximation theorem. 

1.5.5 Theorem. (a) A nonnegative Borel measurable function his the limit 
of an increasing sequence of nonnegative, finite-valued, simple functions hn. 

(b) An arbitrary Borel measurable function f is the limit of a sequence 
of finite-valued simple functions fn, with Ifni :S 1/1 for all n. 

PRooF. (a) Define 

k-1 
h (w) = --n 2n if 

k-1 k 
-- <h(w) <-

2n - 2n' 
k = 1, 2, ... , n2n, 

and let hn(w) = n if h(w) 2: n. [Or equally well, hn(w) = (k- 1)/2n if 
(k- 1)/2n < h(w) :S kj2n, k = 1, 2, ... , n2n; hn(w) = n if h(w) > n; hn(w) 
= 0 if h(w) = 0.] The hn have the desired properties (Problem 1). 

(b) Let gn and hn be nonnegative, finite-valued, simple functions with 
gn t j+ and hn t /-;take In= gn- hn· D 

1.5.6 Theorem. If h 1 and h2 are Borel measurable functions from n to i", 
so are h 1 + h2, h1 - h2, h 1h2, and hl/h2 [assuming these are well-defined, in 
other words, ht (w) + h2(w) is never of the form +oo -oo and h 1 (w)jh2(w) 
is never of the form oo;oo or a/0]. 

PRooF. As in 1.5.5, let s1n, S2n be finite-valued simple functions with 
Stn --+ ht, S2n --+ h2. Then Stn + S2n --+ ht + h2, 

S!nS2nf(h1#0)f(hdo0J--+ h1h2, 

and 
Stn ht 

------- --+ -. 
S2n + (1 / n )I {sln"'O} h2 

Since 

Stn ± S2n, 

are simple, the result follows from 1.5.4. D 

We are going to extend 1.5.4 and part of 1.5.6 to Borel measurable functions 
from n to "in; to do this, we need the following useful result. 

1.5. 7 Lemma. A composition of measurable functions is measurable; spe­
cifically, if g: (Qt.§!)--+ (S12, .972) and h: (S12, .9"2)--+ (S13, §3), then 
hog; (Qt>Jlli)--+ (Q3,§'3). 
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Since some books contain the statement "A composition of measurable 
functions need not be measurable," some explanation is called for. If h: 
~ --+ ~. some authors call h "measurable" iff the preimage of a Borel set 
is a Lebesgue measurable set. We shall call such a function Lebesgue measur­
able. Note that every Borel measurable function is Lebesgue measurable, but 
not conversely. (Consider the indicator of a Lebesgue measurable set that is 
not a Borel set; see Section 1.4, Problem 11.) If g and h are Lebesgue mea­
surable, the composition hog need not be Lebesgue measurable. Let .5fJ be the 
Borel sets, and .5fJ the Lebesgue measurable sets. If B E .5fJ then h- 1 (B) E ~ 
but g- 1 (h- 1 (B)) is known to belong to .5fJ only when h- 1 (B) E :l'J, so we 
cannot conclude that (hog )- 1 (B) E .!fJ. For an explicit example, see Royden 
(1968, p. 70). If g -l (A) E .5fJ for all A E .!fJ, not just for all A E ~ then we are 
in the situation described in Lemma 1.5.7, and hog is Lebesgue measurable; 
similarly, if his Borel measurable (and g is Lebesgue measurable), then hog 
is Lebesgue measurable. 

It is rarely necessary to replace Borel measurability of functions from ~ to ~ 
(or ~k to ~n) by the slightly more general concept of Lebesgue measurability; 
in this book, the only instance is in 1. 7. The integration theory that we are 
developing works for extended real-valued functions on an arbitrary measure 
space (Q, .r, JL). Thus there is no problem in integrating Lebesgue measurable 
functions; n = ~ • .r = ~ 

We may now assert that if ht. h2, ... are Borel measurable functions from 
n to "in and hn converges pointwise to h, then h is Borel measurable; fur­
thermore, if h 1 and h2 are Borel measurable functions from n to "in, so 
are h1 + h2 and h 1 - h2, assuming these are well-defined. The reason is that if 
h(w) = (h 1 (w), ... , hn(w)) describes a map from n to "in, Borel measurability 
of h is equivalent to Borel measurability of all the component functions h;. 

1.5.8 Theorem. Let h: Q --+ "in; if Pi is the projection map of "in onto "i, 
taking (x 1, ••• , Xn) to x;, set h; = Pi o h, i = 1, ... , n. Then h is Borel mea-
surable iff h; is Borel measurable for all i = 1, ... , n. 

PRooF. Assume h Borel measurable. Since 

-00 <X·< 00 
- 1- ' j =J i}, 

which is ~nterval o~~n, p~~s Borel mea~~able:__~us _ , _ 

h: (Q, .97) --+ (~ , .!fJ(~ )), Pi: (~ , .5t5'(~ )) --+ (~ • .!fJ(~)). 

and therefore by 1.5.7, hi: (Q, 37)--+ (i, .!fJ(i)). 
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Conversely, assume each h; to be Borel measurable. Then 

h-1{x E "in: a; :S X; :S b;, i = 1, ... , n} 

n 

= n{w E 0: a; :S h;(w) :S b;} E !7, 
i=l 

and the result follows. D 
We now proceed to some properties of the integral. In the following result, 

all functions are assumed Borel measurable from n to "i. 

1.5.9 Theorem. (a) If fn hdtt exists and c E ~. then fn chdtt exists and 
equals c fn h dtt. 

(b) If g(w) ::=: h(w) for all w, then fn g dtt ::=: fn h dtt in the sense that 
if fn h dtt exists and is greater than -oo, then fn g dtt exists and fn g dtt 
:::: fn h dtt; if fn g dtt exists and is less than +oo, then fn h dtt exists and 
fn h dtt ::= fn g dtt. Thus if both integrals exist, fn g dtt :::: fn h dtt, whether or 
not the integrals are finite. 

(c) If fn h dtt exists, then I fn h dttl ::= fn I hi dtt. 
(d) If h :::: 0 and B E .r, then J8 h dtt = sup{j8 s dtt: 0 :S s :S h, s simple}. 
(e) If fn hdtt exists, so does fA hdtt for each A E .97; if fn hdtt is finite, 

then JA h dtt is also finite for each A E !7. 

PROOF. (a) It is immediate that this holds when h is simple. If h is nonneg­
ative and c > 0, then 

in chdtt =sup {in sdtt; 

= csup {in~ dtL; 

0 ::= s ::= ch, s 

s 
0 ::: - ::: h, 

c 

simple} 

~ simple} = c in hdtt. 

In general, if h = h+- h- and c > 0, then (ch)+ = ch+, (ch)- = ch-; hence 
fn ch dtt = c fn h+ dtt - c fn h- dtt by what we have just proved, so that 
fn chdtt = c fn hdtt. If c < 0, then 

so 

(b) If g and h are nonnegative and 0 ::= s ::= h, s simple, then 0 ::= s ::= 
g; hence fnhdtt ::= fngdjt. In general, h ::= g implies h+ ::= g+, h-:::: g-. If 
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In h dtt > -oo, we have In g- dtt ::= In h- dtt < oo; hence In g dtt exists and 
equals 

The case in which In gdtt < oo is handled similarly. 
(c) We have -lhl ::= h ::= lhl so by (a) and (b), -In lhl dtt 

::= In h dtt ::= In I hi dtt and the result follows. (Note that I hi is Borel mea­
surable by 1.5.6 since I hi = h+ +h-.) 

(d) If 0 ::= s ::= h, then Is s dtt :S Is h dtt by (b); hence 

is hdtt:::: sup {is sdw 0 ::= s ::= h}. 
If 0 ::= t ::= his, t simple, then t = tis ::= h so In t dtt ::= sup{jn sf s dtt: 

0 ::= s ::= h, s simple}. Take the sup over t to obtain Is hdtt ::= sup{js sdw 
0 ::= s ::= h, s simple}. 

(e) This follows from (b) and the fact that (h!A)+ = h+JA ::= h+, (hlA)­
=h-IA:Sh-. D 

Problems 

1. Show that the functions proposed in the proof of 1.5.5(a) have the desired 
properties. Show also that if h is bounded, the approximating sequence 
converges to h uniformly on 0. 

2. Let f and g be extended real-valued Borel measurable functions on 
(0, .97), and define 

h(w) = f(w) 

= g(w) 

if 

if 

WEA, 

where A is a set in .97. Show that h is Borel measurable. 
3. If ft. /2, ... are extended real-valued Borel measurable functions on 

(0, .97), n = 1, 2, ... , show that supn fn and infn fn are Borel 
measurable (hence lim supn-+oo fn and liminfn-+oo fn are Borel 
measurable). 

4. Let (0, .97, JL) be a complete measure space. Iff: (0, .97) --+ (0', .97') 
and g: \o--+ 0', g = f except on a subset of a setA E .97with tt(A) = 0, 
show th\t g is measurable (relative to .97 and .97'). 

*5. (a) Let f be a function from ~k to ~m, not necessarily Borel measur­
able. Show that {x: f is discontinuous at x} is an F u (a countable 
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union of closed subsets of ~k), and hence is a Borel set. Does this 
result hold in spaces more general than the Euclidean space ~ n? 

(b) Show that there is no function from ~to ~whose discontinuity set 
is the irrationals. (In 1.4.5 we constructed a distribution function 
whose discontinuity set was the rationals.) 

*6. How many Borel measurable functions are there from ~n to ~k? 

7. We have seen that a pointwise limit of measurable functions is measur­
able. We may also show that under certain conditions, a pointwise limit 
of measures is a measure. The following result, known as Steinhaus' 
lemma, will be needed in the problem: If { ank} is a double sequence of 
real numbers satisfying 

(i) 2:::~ 1 ank = 1 for all n, 
(ii) 2:::~1 lank I :S c < oo for all n, and 
(iii) ank --+ 0 as n --+ oo for all k, 

there is a sequence {xn}, with Xn = 0 or 1 for all n, such that t n 
= 2:::~ 1 ankXk fails to converge to a finite or infinite limit. 

To prove this, choose positive integers n 1 and k1 arbitrarily; having cho­
sennj, ... ,nr.k1, ... ,k"choosenr+! > n,suchthatl::k:Sk,lan,+1kl < %; 
this is possible by (iii). Then choose krt 1 > kr such that l:k>k,+ 

1 
lan,+1k I 

< ~; this is possible by (ii). Set Xk = 0, k2s-l < k :S k2." Xk = 1, k2s 
< k :S k2s+l• s = 1, 2, .... We may write tn,+

1 
as h 1 + h2 + h3, where 

ht is the sum of an,+
1
kXk fork :S kr, h2 corresponds to kr < k :S kr+t. and 

h3 to k > kr+l· If r is odd, then Xk = 0, kr < k :S kr+l; hence ltn,. 1 1 < ±· 
If r is even, then h2 = l:k,<k:<'k,+

1 
an,+ 1k; hence by (i), 

Thus tn,+ 1 > ~ - lhtl- lh3l > ~. so {tn} cannot converge. 

(a) Vitali-Hahn-Saks Theorem. Let (Q, .97) be a measurable space, and let 
Pn, n = 1, 2, ... , be probability measures on .97. If Pn(A)--+ P(A) for 
all A E .97, then P is a probability measure on .97; furthermore, if { B k} is a 
sequence of sets in §T decreasing to 0, then supn Pn (Bk) ..j, 0 ask--+ oo. 
[Let A be the disjoint union of sets Ak E !7; without loss of generality, 
assume A= n (otherwise add Ac to both sides). It is immediate that P 
is finitely additive, so by Problem 5, Section 1.2, a = l:k P(Ak) :S P(Q) 
= 1. If a< 1, setank = (1 -a)- 1 [Pn(Ak) -P(Ak)] and apply Steinhaus' 
lemma.] 
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(b) Extend the Vitali-Hahn-Saks theorem to the case where the Pn are 
not necessarily probability measures, but P n (Q) :S c < oo for all n. [For 
further extensions, see Dunford and Schwartz (1958).] 

1.6 BASIC INTEGRATION THEOREMS 

We are now ready to present the main properties of the integral. The results 
in this section will be used many times in the text. As above, (Q, .r, JL) is a 
fixed measure space, and all functions to be considered map n to i:. 

1.6.1 Theorem. Let h be a Borel measurable function such that In h dtt 
exists. Define ).(B)= Is hdtt, BE.?. Then ).. is countably additive on !7; 
thus if h 2: 0, ).. is a measure. 

PROOF. Let h be a nonnegative simple function '2:7=1 xJA;· Then ).(B) 
=Is hdtt = '2:7= 1 X;JL(B n A;); since JL is countably additive, so is A. 

Now let h be nonnegative Borel measurable, and let B = U::0= 1 Bn, the Bn 
disjoint sets in .r. If s is simple and 0 :S s :S h, then 

by what we have proved for nonnegative simple functions 

by 1.5.9(b) (or the definition of the integral). 

Take the sup overs to obtain, by 1.5.9(d), ).(B) :S '2:~ 1 )..(Bn). 
Now Bn C B, hence lsn :SIs, so by 1.5.9(b), )..(Bn) :S ).(B). If A(Bn) = 00 

for some n, we are finished, so assume all )..(Bn) finite. Fix n and let£> 0. 
It follows from 1.59(b), (d) and the fact that the maximum of a finite number 
of simple functions is simple that we can find a simple function s, 0 ::; s ::; h, 
such that 

1 sdtt 2: 1 hdtt- ~. 
S, S, n 

i = 1, 2, ... , n. 

Now 

\ r n 

)..(B1 U · · · UBn) = }( hdtt 2: ;;, sdtt = L1 sdtt 
uS; US, i=1 S, 

i=1 
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by what we have proved for nonnegative simple functions, hence 

A(Bt U · · · UBn) 2:: t 1 hdtt- e = tA(B;)- e. 
i=l S, i=! 

Since A(B)::: A (U7=t B;) and£ is arbitrary, we have 

00 
A(B)?: LA(B;). 

i=l 

Finally let h = h+ - h- be an arbitrary Borel measurable function. Then 
A(B) = Ish+ dtt - Ish- dtt. Since In h+ dtt < oo or In h- dtt < oo, the re­
sult follows. D 

The proof of 1.6.1 shows that A is the difference of two measures A+ and 
A-, where A +(B)= Ish+ dtt, A- =Ish- dtt; at least one of the measures A+ 
and A- must be finite. 

1.6.2 Monotone Convergence Theorem. Let ht. h2, ... form an increasing 
sequence of nonnegative Borel measurable functions, and let h(w) 
= limn---+00 hn (w ), w E n. Then In hn dtt ---+ In h djt. [Note that In hn dtt 
increases with n by 1.5.9(b); for short, 0 :S hn t h implies In hn dtt 
tIn hdtt.] 

PROOF. By 1.5.9(b), In hn dtt :SIn hdtt for all n, hence k = limn---+oo In hn 
dtt :SIn hdjt. Let 0 < b < 1, and let s be a nonnegative, finite-valued, 
simple function with s :S h. Let B n = { w: hn ( w) 2:: bs( w)}. Then B n t n since 
hn t h and s is finite-valued. Now k 2:: In hn dtt 2:: Is" hn dtt by 1.5.9(b), 

and Is" hn dtt 2:: b Is" sdtt by 1.5.9(a) and (b). By 1.6.1 and 1.2.7, Is" sdtt 
---+ In sdtt, hence (let b---+ 1) k?: In sdJL. Take the sup over s to obtain 
k::: In hdtt. D 

1.6.3 Additivity Theorem. Let f and g be Borel measurable, and assume that 
f + g is well-defined. If In f dtt and In g dtt exist and In f dtt +In g dtt is 
well-defined (not of the form +oo -oo or -oo +oo ), then 

h (f + g) dtt = h f dtt + h g djt. 

In particular, iff and g are integrable, so is f +g. 
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PROOF. If f and g are nonnegative simple functions, this is immediate from 
the definition of the integral. Assume f and g are nonnegative Borel measur­
able, and let tn, Un be nonnegative simple functions increasing to f and g, 
respectively. Then 0 :S Sn = tn + Un t f + g. Now In Sn dtt = In tn dtt 
+ In Un dtt by what we have proved for nonnegative simple functions; hence 
by 1.6.2, InU +g) dtt =In! dtt +In gdtt. 

Now if f 2: 0, g ::= 0, h = f + g 2: 0 (so g must be finite), we have 
f = h+ (-g); hence In f dtt = Inhdtt- IngdJL. If Ingdtt is finite, then 
In hdtt =In f dtt +In gdf.L, and if In gdJL = -oo, then since h 2: 0, 

contradicting the hypothesis that In f dtt +In gdtt is well-defined. Similarly, 
if f 2: 0, g ::= 0, h ::= 0, we obtain In h dtt = In f dtt +In g dtt by replac­
ing all functions by their negatives. (Explicitly, -g 2: 0, - f ::= 0, -h = - f 
- g 2: 0, and the above argument applies.) 

Let 

E1 = {w: f(w)2:0, g(w) 2: 0}, 

E2 = {w: f(w) 2: 0, g(w) < 0, h(w)2:0}, 

E3 = {w: f(w) 2: 0, g(w) < 0, h(w) < 0}, 

E4 = {w: f(w) < 0, g(w) 2: 0, h(w) 2: 0}, 

Es = {w: f(w) < 0, g(w) 2: 0, h(w) < 0}, 

E6 = {w: f(w) < 0, g(w) < 0}. 

The above argument shows that IE hdtt =IE f dtt +IE. gdJL. Now In f dtt 
6 6 I i 1 

= l:i=l IE f dtt, In gdJL = l:i=l IE gdtt by 1.6.1, so that In f dtt +In gdJL 
6 ' ' 

= l:i=l IE; hdtt, and this equals In hdtt by 1.6.1, if we can show that In hdtt 
exists; that is, In h+ dtt and In h- dtt are not both infinite. 

If this is the case, IE h+ dtt = IE h- dtt = oo for some i, j (1.6.1 again), 
' 1 

so that IE hdtt = oo, IE hdtt = -oo. But then J:Ef dtt or JE gdJL = oo; 
I j l I 

hence In f dtt or In g dtt = oo. (Note that In j+ dtt 2: IE j+ dtt.) Similarly 
In f dt-t or In g dtt = -oo, and this is a contradiction. D ' 

\ 
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1.6.4 Corollaries. (a) If h 1, h2, ... are nonnegative Borel measurable, 

Thus any series of nonnegative Borel measurable functions may be integrated 
term by term. 

(b) If h is Borel measurable, h is integrable iff lhl is integrable. 
(c) If g and h are Borel measurable with lgl ::; h, h integrable, then g is 

integrable. 

PROOF. (a) l::Z= 1 hk t 2:::~ 1 hk. and the result follows from 1.6.2 and 1.6.3. 
(b) Since lhl = h+ + h-, this follows from the definition of the integral 

and 1.6.3. 
(c) By 1.5.9(b), lgl is integrable, and the result follows from (b) 

above. D. 

A condition is said to hold almost everywhere with respect to the measure 
JL (written a.e. [JL] or simply a.e. if JL is understood) iff there is a set B E .r 
of JL-measure 0 such that the condition holds outside of B. From the point of 
view of integration theory, functions that differ only on a set of measure 0 
may be identified. This is established by the following result. 

1.6.5 Theorem. Let f, g, and h be Borel measurable functions. 

(a) If f = 0 a.e. [JL], then In f djt = 0. 
(b) If g = h a.e. [JL] and In g djt exists, then so does In hdjt, and In g dJL 

=In hdJL. 

PRooF. 
(a) Iff= 2:::7= 1 xJA, is simple, then x; =I 0 implies JL(A;) = 0 by hypoth­

esis, hence In f dJL = 0. If f 2: 0 and 0 :S s ::; f, s simple, then s = 0 a.e. 
[JL], hence In sdJL = 0; thus In f dJL = 0. Iff= j+- f-, then j+ and/-, 
being less than or equal to 1/1, are 0 a.e. [JL], and the result follows. 

(b) Let A= {w: g(w) = h(w)}, B =A c. Then g = giA + gis, h =hi A 
+his= giA +his. Since gis =his= 0 except on B, a set of measure 0, 
the result follows from part (a) and 1.6.3. D 

Thus in any integration theorem, we may freely use the phrase "almost 
everywhere." For example, if { hn} is an increasing sequence of nonnegative 
Borel measurable functions converging a.e. to the Borel measurable function 
h, then In hn djt--+ In h djt. 

Another example: If g and h are Borel measurable and g 2: h a.e., then 
IngdJL 2: Inhdjt [in the sense of 1.5.9(b)]. 
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1.6.6 Theorem. Let h be Borel measurable. 

(a) If h is integrable, then h is finite a.e. 
(b) If h ::=: 0 and fn hdtt = 0, then h = 0 a. e. 
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PROOF. (a) Let A= {w: lh(w)l = oo}. If tt(A) > 0, then fn lhl dtt ::=: 
fA lhl dtt = OOJL(A) = oo, a contradiction. 

(b) Let B = {w: h(w) > 0}, Bn = {w: h(w) ::=: 1/n} t B. We have 
0 :S his" :S his= h; hence by 1.5.9(b), j 8" hdtt = 0. But j 8 " hdtt 
::=: (1/n)tt(Bn), so that tt(Bn) = 0 for all n, and thus tt(B) = 0. D 

The monotone convergence theorem was proved under the hypothesis that 
all functions were nonnegative. This assumption can be relaxed considerably, 
as we now prove. 

1.6.7 Extended Monotone Convergence Theorem. Let g 1, g2 .... , g, h be 
Borel measurable. 

(a) If gn ::=: h for all n, where fn h dtt > -oo, and gn t g, then 

(b) If gn :S h for all n, where fn hdtt < oo, and gn ..j, g, then 

PRooF. (a) If fn hdtt = oo, then by 1.5.9(b), fn gn dtt = oo for all n, and 
fn g dtt = oo. Thus assume fn h dtt < oo, so that by 1.6.6(a), h is a. e. finite; 
change h to 0 on the set where it is infinite. Then 0::; gn - h t g- h a.e., 
hence by 1.6.2, fn (gn -h) dtt t fn (g- h) djt. The result follows from 1.6.3. 
(We must check that the additivity theorem actually applies. Since fn h dtt 
> -oo, fn gn dtt and fn g dtt exist and are greater than -oo by 1.5.9(b). 
Also, fn h dtt is finite, so that fn gn dtt - fn h dtt and fn g dtt - fn h dtt are 
well-defined.) 

(b) -gn ::=: -h, fn -hdtt > -00, and -gn t -g. By part (a),- fn gn dtt 
t- fn gdjt, so fn gn dtt ..j, fn gdjt. D 

The exten~ monotone convergence theorem asserts that under appropriate 
conditions, the limit of the integrals of a sequence of functions is the integral 
of the limit function. More general theorems of this type can be obtained if 
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we replace limits by upper or lower limits. If f 1 , /2, ... are functions from n 
to R, lim infn---+oo fn and lim supn---+oo fn are defined pointwise, that is, 

( liminf fn) (w) =sup inf fk(w), 
n---+00 n k?:n 

( limsupfn) (w) = infsupfk(w). 
n---+oo n k?:n 

1.6.8 Fatou's Lemma. Let f 1, /2, ... , f be Borel measurable. 

(a) If fn 2: f for all n, where In f dtt > -oo, then 

liminf f !n dtt 2: f (liminffn) dtt. 
n---+00 ln ln n---+00 

(b) If fn :S f for all n, where In f dtt < oo, then 

lim sup { !n dtt ::: { (lim sup !n) dtt. 
n---+00 ln ln n---+00 

PROOF. (a) Let gn = infk>n fk> g = lim inf fn. Then gn 2: f for all n, 
In f dtt > -00, and gn t g.-By 1.6.7, In gn dtt t In(liminfn---+oo fn)djt. But 
gn :S fn, SO 

lim r gndtt=liminf r gndtt:Sliminf r fndJL. 
n---+00 ln n---+00 ln n---+00 ln 

(b) We may write 

f (lim sup !n) dtt = - { lim inf(-!n) dtt ln n---+00 ln n---+00 

2: -liminf r (- fn)dtt 
n---+00 ln by (a) 

= lim sup r In djt. D 
n---+cx:J ln 

The following result is one of the "bread and butter" theorems of analysis; 
it will be used quite often in later chapters. 

1.6.9 Dominated Convergence Theorem. If /1, /2, ... , f, g are Borel mea­
surable, lfn I :S g for all n, where g is tt-integrable, and fn --+ f a.e. [JL], then 
f is tt-integrable and In fn dtt--+ In f djt. 
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PROOF. We have 1/1 :S g a.e.; hence f is integrable by 1.6.4(c). By 1.6.8, 

1 (liminf fn) dtt :S liminf1 fn dtt :S limsup1 fn dtt 
n n---+00 n---+00 n n---+00 n 

:S 1 (lim sup fn) djt. 
n n---+00 

By hypothesis, liminfn---+oo fn = limsupn---+oo fn = f a.e., so all terms of the 
above inequality are equal to fn f dJL. D 

1.6.10 Corollary. If ft. f2, ... , f, g are Borel measurable, Ifni :S g for all 
n, where lgiP is tt-integrable (p > 0, fixed), and fn -+ f a.e. [JL], then lfiP 
is tt-integrable and fn lfn - fiP dtt-+ 0 as n -+ oo. 

PRooF. We have lfniP :S lgiP for all n; so lfiP :S lgiP, and therefore lfiP 
is integrable. Also lfn- fiP :S (Ifni+ 1/I)P :S (21gi)P, which is integrable, 
and the result follows from 1.6.9. D 

We have seen in 1.5.9(b) that g :S h implies fn gdjt :S fn hdtt, and in fact 
fA g dtt :S fA h dtt for all A E .r. There is a converse to this result. 

1.6.11 Theorem. If JL is a-finite on .r, g and hare Borel measurable, fn g dtt 

and J n h dtt exist, and JA g dtt :S JA h dtt for all A E .r, then g :S h a. e. [JL]. 

PRooF. It is sufficient to prove this when JL is finite. Let 

Then 

But 

1 
g(w) 2: h(w) + -, 

n 
lh(w)l :S n}. 

11. hdttl :S 1. lhl dtt :S ntt(An) < 00, 

and thus we~ay subtract fA. h dtt to obtain (1 /n )tt(An) :S 0, hence tt(An) 

= 0. Therefore tt(U~ 1 An)= 0; hence tt{w: g(w) > h(w), h(w) finite}= 0. 
Consequently g :S h a.e. on {w: h(w) finite}. Clearly, g::; h everywhere on 
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{w: h(w) = oo}, and by taking Cn = {w: h(w) = -oo, g(w) 2: -n} we obtain 

hence tt(Cn) = 0. Thus tt(U~=l Cn) = 0, so that 

tt{w: g(w) > h(w), h(w) = -oo} = 0. 

Therefore g :S h a.e. on {w: h(w) = -oo}. D 

If g and hare integrable, the proof is simpler. Let B = {w: g(w) > h(w)}. 
Then Is g dtt :S Is h dtt :S Is g d!..t; hence all three integrals are equal. Thus by 
1.6.3, 0 = Is(g- h)dtt = I 0Jg- h)ls dtt, with (g- h)ls 2: 0. By 1.6.6(b), 
(g- h)ls = 0 a.e., so that g = h a.e. on B. But g :S h on Be, and the result 
follows. Note that in this case, JL need not be a-finite. 

The reader may have noticed that several integration theorems in this section 
were proved by starting with nonnegative simple functions and working up 
to nonnegative measurable functions and finally to arbitrary measurable func­
tions. This technique is quite basic and will often be useful. A good illustra­
tion of the method is the following result, which introduces the notion of a 
measure-preserving transformation, a key concept in ergodic theory. In fact it 
is convenient here to start with indicators before proceeding to nonnegative 
simple functions. 

1.6.12 Theorem. LetT: (n, .97)---+ (n0 , Yo) be a measurable mapping, and 
let JL be a measure on Y. Define a measure Jto = ttT- 1 on Yo by 

If no = n, Yo = Y, and tto = JL, T is said to preserve the measure JL. 
Iff: (no, Yo)---+ (R, JI)'(R)) and A E .9"Q, then 

{ f(T(w))djt(w) = 1 f(w)dtto(w), 
lr- 1A A 

in the sense that if one of the integrals exists, so does the other, and the two 
integrals are equal. 

PROOF. If f is an indicator Is, the desired formula states that 
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which is true by definition of tto· If f is a nonnegative simple function 
2:::7= 1 xJsP then 

by 1.6.3 

by what we have proved for indicators 

= 1 f(w)dtto(w) by 1.6.3. 

Iff is a non-negative Borel measurable function, let f 1, /2, ... be nonnegative 
simple functions increasing to f. Then fr-'A fn (T(w )) dtt(w) =fA fn (w) dtto(w) 
by what we have proved for simple functions, and the monotone convergence 
theorem yields the desired result for f. 

Finally, iff = j+ - f- is an arbitrary Borel measurable function, we have 
proved that the result holds for j+ and f-. If, say, fA j+(w)d{lo(w) < oo, 
then fr-IA j+(T(w))dtt(w) < oo, and it follows that if one of the integrals 
exists, so does the other, and the two integrals are equal. D 

If one is having difficulty proving a theorem about measurable functions 
or integration, it is often helpful to start with indicators and work upward. In 
fact it is possible to suspect that almost anything can be proved this way, but 
of course there are exceptions. For example, you will run into trouble trying 
to prove the proposition "All functions are indicators." 

We shall adopt the following terminology: If JL is Lebesgue measure and A 
is an interval [a, b], JA f dtt, if it exists, will often be denoted by J: f(x) dx 

(or J.b' · · ·J.bn f(x!, · · ·, Xn)dx! · · · dxn if we are integrating functions on ~n). 
a1 an 

The endpoints may be deleted from the interval without changing the integral, 
since the Lebesgue measure of a single point is 0. If f is integrable with 
respect to JL, then we say that f is Lebesgue integrable. A different notation, 
such as rab(f), will be used for the Riemann integral off on [a, b]. 

Problems 
I 

The first three problems give conditions under which some of the most 
commonly ockrring operations in real analysis may be performed: taking a 
limit under the integral sign, integrating an infinite series term by term, and 
differentiating under the integral sign. 
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1. Let I = l(x, y) be a real-valued function of two real variables, defined 
for a < y < b, c < x <d. Assume that for each x, l(x, ·)is a Borel mea­
surable function of y, and that there is a Borel measurable g: (a, b) ---+ ~ 

such that ll(x, y)l :S g(y) for all x, y, and I: g(y)dy < oo. If Xo E (c, d) 
and limx--+.xo l(x, y) exists for all y E (a, b), show that 

lim jb l(x, y)dy = jb [lim l(x, y)] dy. 
x~~ a a x~~ 

2. Let 11, /2, ... be Borel measurable functions on (Q, .¥, JL). If 

00 

L Jllnl djt < 00, 
n=l n 

show that '2:~ 1 In converges a.e. [JL] to a finite-valued function, and 

In ('l:~=l In) dtt = 'l:~=l In In djt. 

3. Let I = l(x, y) be a real-valued function of two real variables, defined 
for a < y < b, c < x < d, such that I is a Borel measurable function of 
y for each fixed x. Assume that for each x, l(x, ·) is integrable over (a, b) 
(with respect to Lebesgue measure). Suppose that the partial derivative 
11 (x, y) of I with respect to x exists for all (x, y), and suppose there is a 
Borel measurable h: (a, b) ---+ ~ such that 111 (x, y)l ::= h(y) for all x, y, 
where J: h(y)dy < oo. 

Show that d[j: l(x, y)dy]/dx exists for all x E (c, d), and equals 

J: 11 (x, y)dy. [It must be verified that 11 (x, ·) is Borel measurable for 
each x.] 

4. If JL is a measure on (Q, .¥) and At. A2 , ••• is a sequence of sets in.¥, 
use Fatou's lemma to show that 

tt(li~infAn) :S l~~~f jt(An). 

If JL is finite, show that 

tt(limsupAn) 2: limsupjt(An). 
n n---+oo 

Thus if JL is finite and A= limn An, then tt(A) = limn---+oo jt(An ). (For 
another proof of this, see Section 1.2, Problem 10.) 

5. Give an example of a sequence of Lebesgue integrable functions In 
converging everywhere to a Lebesgue integrable function 1. such that 

}~~1: ln(x)dx < 1: l(x)dx. 
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Thus the hypotheses of the dominated convergence theorem and Fatou's 
lemma cannot be dropped. 

6. (a) Show that Jt"'o e-1 ln tdt = limn---+oo j 1n[l- (t/nW ln tdt. 

(b) Show that J; e-t ln t dt = limn---+oo j 0
1
[1 - (t/n W ln t dt. 

7. If (Q, !T, tt) is the completion of (Q, .9{i, JL) and f is a Borel measurable 
function on (Q, .97), show that there is a Borel measurable function g on 
(Q, .90) such that f = g, except on a subset of a set in .90 of measure 
0. (Start with indicators.) 

8. If f is a Borel measurable function from ~ to ~ and a E ~. show that 

1: f(x) dx = 1: f(x -a) dx 

in the sense that if one integral exists, so does the other, and the two are 
equal. (Start with indicators.) 

1. 7 COMPARISON OF LEBESGUE AND RffiMANN INTEGRALS 

In this section we show that integration with respect to Lebesgue measure 
is more general than Riemann integration, and we obtain a precise criterion 
for Riemann integrability. 

Let [a, b] be a bounded closed interval of reals, and let f be a bounded 
real-valued function on [a, b ], assumed fixed throughout the discussion. If 
P: a= x0 < x1 < · · · < Xn = b is a partition of [a, b], we may construct the 
upper and lower sums of f relative to P as follows. 

Let 
M; = sup{f(y): Xi-! < y::: xd, 

m; = inf{f(y): Xi-! < y :S X;}, 

i=l, ... ,n, 

i=l, ... ,n, 

and define step functions a and {3, called the upper and lower functions 
corresponding to P, by 

a(x) = M; 

f3(x) = m; 

if 

if 

Xi-! <X :S X;, 

X;-1 <X :S X;, 

i=l, ... ,n, 

i=l, ... ,n 

[a(a) and f3(a) may be chosen arbitrarily]. The upper and lower sums are 
given by 

I 

n 

U(P) = LM;(X;- X;-l), 

i=l 

n 

L(P) = Lm;(X; -x;_ 1). 

i=l 
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Now we take as a measure space n =[a, b], .r = .5fJ [a, b], the Lebesgue 
measurable subsets of [a, b], JL = Lebesgue measure. Since a and f3 are simple 
functions, we have 

b 

U(P) = 1 adJL, L(P) = 1b f3 dJL. 

Now let P 1, P2, ... be a sequence of partitions of [a, b] such that Pk+ 1 is 
a refinement of Pk for each k, and such that IPkl (the length of the largest 
subinterval of Pk) approaches 0 as k ---+ oo. If ak and f3k are the upper and 
lower functions corresponding to Pb then 

Thus ak and f3k approach limit functions a and {3. If 1/1 is bounded by M, then 
all lakl and lf3kl are bounded by Mas well, and the function that is constant 
at M is integrable on [a, b] with respect to JL, since 

JL[a, b] = b- a < oo. 

By the dominated convergence theorem, 

b b 

lim U(Pk) = lim { ak dJL = { a df.L, 
k-+oo k-+oo Ja Ja 

and 
b b 

lim L(Pk) = lim { f3k dJL = 1 f3 dJL. 
k-+oo k-+oo}a a 

We shall need one other fact, namely that if x is not an endpoint of any of 
the subintervals of the Pb 

f is continuous at x iff a(x) = f(x) = f3(x). 

This follows by a standard t:-8 argument. 
If limk-+oo U(Pk) = limk-+oo L(Pk) =a finite number r, independent of the 

particular sequence of partitions, f is said to be Riemann integrable on [a, b ], 
and r = rab(f) is said to be the (value of the) Riemann integral off on [a, b]. 
The above argument shows that f is Riemann integrable iff 
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independent of the particular sequence of partitions. If f is Riemann inte­
grable, 

b b 

Tab(/) = 1 a dtt = 1 f3 djt. 

We are now ready for the main results. 

1. 7.1 Theorem. Let f be a bounded real-valued function on [a, b]. 

(a) The function f is Riemann integrable on [a, b] iff f is continuous 
almost everywhere on [a, b] (with respect to Lebesgue measure). 

(b) Iff is Riemann integrable on [a, b], then f is integrable with respect 
to Lebesgue measure on [a, b ], and the two integrals are equal. 

PROOF. (a) Iff is Riemann integrable, 

As f3 ::; f ::; a, 1.6.6(b) applied to a- f3 yields a= f = f3 a.e.; hence f is 
continuous a.e. Conversely, assume f is continuous a.e.; then a= f = f3 a.e. 
Now a and f3 are limits of simple functions, and hence are Borel measurable. 
Thus f differs from a measurable function on a subset of a set of measure 
0, and therefore f is measurable because of the completeness of the measure 
space. (See Section 1.5, Problem 4.) Since f is bounded, it is integrable with 
respect to JL, and since a = f = f3 a.e., we have 

b b b 1 adtt = 1 f3dtt = 1 f dtt, (1) 

independent of the particular sequence of partitions. Therefore f is Riemann 
integrable. 

(b) If f is Riemann integrable, then f is continuous a.e. by part (a). But 

then Eq. (1) yields rab(f) = J: f dtt, as desired. D 

Theorem 1.7.1 holds equally well inn dimensions, with [a, b] replaced by 
a closed bounded interval of ~ n; the proof is essentially the same. 

A somewhat more complicated situation arises with improper integrals; here 
the interval of integration is infinite or the function f is unbounded. Some 
results are givep in Problem 3. 

We have seen that convenient conditions exist that allow the interchange 
of limit operations on Lebesgue integrable functions. (For example, see Prob­
lems 1-3 of Section 1.6.) The corresponding results for Riemann integrable 
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functions are more complicated, basically because the limit of a sequence of 
Riemann integrable functions need not be Riemann integrable, even if the 
entire sequence is uniformly bounded (see Problem 4). Thus Riemann inte­
grability of the limit function must be added as a hypothesis, and this is a 
serious limitation on the scope of the results. 

Problems 

1. The function defined on [0, 1] by f(x) = 1 if xis irrational, and f(x) = 0 
if x is rational, is the standard example of a function that is Lebesgue 
integrable (it is 1 a.e.) but not Riemann integrable. But what is wrong 
with the following reasoning? 

If we consider the behavior of f on the irrationals, f assumes the 
constant value 1 and is therefore continuous. Since the rationals have 
Lebesgue measure 0, f is therefore continuous almost everywhere and 
hence is Riemann integrable. 

2. Let f be a bounded real-valued function on the bounded closed interval 
[a, b]. Let F be an increasing right-continuous function on [a, b] with cor­
responding Lebesgue-Stieltjes measure JL (defined on the Borel subsets 
of [a, b]). 

Define M;, m;, a, and f3 as in 1.7, and take 

n b 

U(P) = l:M;(F(x;)- F(xH)) = 1 adJL, 
i=l a 

n b 

L(P) = 2:: m;(F(x;)- F(x;_t)) = 1 f3dJL, 
~~ a 

where J: indicates that the integration is over (a, b]. If {Pd is a sequence 
of partitions with IPkl---+ 0 and Pk+l refining Pb with ak and f3k the upper 
and lower functions corresponding to Pb 

b 

lim U(Pk) = 1 adJL, 
k---+oo a 

b 

lim L(Pk) = 1 f3dJL, 
k---+oo a 

where a= limk---+oo ab f3 = limk---+oo f3k· If U(Pk) and L(Pk) approach the 
same limit TabU; F) (independent of the particular sequence of partitions), 
this number is called the Riemann-Stieltjes integral of f with respect to 
F on [a, b], and f is said to be Riemann-Stieltjes integrable with respect 
to F on [a, b]. 
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(a) Show that f is Riemann-Stieltjes integrable iff f is continuous a.e. 
[JL] on [a,b]. 

(b) Show that iff is Riemann-Stieltjes integrable, then f is integrable 
with respect to the completion of the measure JL, and the two integrals 
are equal. 

3. Iff: ~--+ ~. the improper Riemann integral off may be defined as 

r(f) = lim TabU) 

if the limit exists and is finite. 

a---+-oo 
b-+00 

(a) Show that if f has an improper Riemann integral, it is continuous 
a.e. [Lebesgue measure] on ~. but not conversely. 

(b) If f is nonnegative and has an improper Riemann integral, show that 
f is integrable with respect to the completion of Lebesgue measure, 
and the two integrals are equal. Give a counterexample to this result 
if the nonnegativity hypothesis is dropped. 

4. Give an example of a sequence of functions fn on [a, b] such that each 
fn is Riemann integrable, Ifni :S 1 for all n, fn--+ f everywhere, but f 
is not Riemann integrable. 

Note: References on measure and integration will be given at the end of 
Chapter 2. 


